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Abstract—The traditional approach to IP core design is to use simu-
lations with test vectors. This is not feasible when dealing with complex
function cores such as the Image Segmentation case-study algorithm
in this paper. An algorithm developer needs to carry out experiments
on large real-world data sets, with fast turn-around times, and in real
time to facilitate performance tuning and incremental development.
Previously we proposed a methodology called Application-Specific Vector
Processor (ASVP). The ASVP approach first constructs a programmable
architecture customized for a given application, then employs software
techniques to develop firmware that implements the algorithm.

In our setting we employ an embedded simple scalar CPU (8-bit
PicoBlaze 3) to control a floating-point vector processing unit (VPU)
by issuing wide (horizontally encoded) instructions to it. In this work we
dramatically reduce the overhead of the wide-instruction issue (in one
case by 13x) by implementing a new two-level configuration table. The
table stores frequently used vector definitions (in Level 1) and vector
instructions (in Level 2), pre-loading them quickly into the issue buffer.
A configuration in the issue buffer can be further modified before being
sent to the processing unit. This ensures the architecture stays general
and fully customizable.

Keywords-Custom accelerators, vector processing, FPGA, DSP.

I. INTRODUCTION

The mainstream design-entry languages of contemporary FPGAs
are VHDL and Verilog. Synthesis from higher-level languages, such
as C [1], OpenCL [2] or CUDA [3] is difficult for two closely related
reasons: First, the FPGA design space is nearly infinite and a program
in the high-level language can be implemented in many different
ways, with wildly varying resource usage, total cycle count, and
cycle time (operating frequency). It is very difficult for a compiler to
strike the optimal configuration that minimizes the program execution
latency (absolute time). Second, even if the optimal configuration is
known, a single (re-)compilation process after an application source
code modification may take tens of minutes up to several hours to
complete, severely impacting the turn-around time of the application
development and lowering the human programmer efficiency.

A high-level overview of our approach to designing custom FPGA-
based accelerators is shown in Figure 1. We call our approach
Application-Specific Vector Processor (ASVP); it is loosely based on
the previous work [4] where it was called Basic Computing Element
(BCE). In traditional work-flows (not shown) when the source code
is modified by the developer, the accelerator must be recompiled
and resynthesized to generate a new FPGA configware (bitstream)
that can be verified. The drawback of the traditional approach is the
long synthesis time caused mainly by a slow place&route process
of the low-level tools. In our approach we abstract the custom
accelerator into a specialized firmware-programmable architecture.
In the first step the high-level source code is analyzed and domain
features are extracted. Based on the required domain features a
customized architecture is selected or newly built. The architecture is
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Fig. 1. The proposed custom accelerators development work-flow. Dashed
lines indicate processes run once, full lines mark iterative paths.

programmable by firmware to some extent, hence minor source code
modifications can be tested quickly for they will trigger only fast
firmware recompilation. Only when an architectural change is called
for after a major source code modification, the costly re-synthesis
process must be rerun.

In our previous work [5] we proposed the ASVP architecture to
satisfy the following requirements:

• The architecture has to be customizable for different applications
to take advantage of the FPGA reconfigurability.

• The architecture has to support both floating-point (long-latency)
and integer (short-latency) operations found in DSP and video
applications. The long-latency FP operations, combined with the
common need of DSP applications to support vector reductions,
pose some new challenges.

• Several hardware technology nodes of different characteristics
should be supported without a need for manual software changes
in the firmware. Specifically, the firmware programmer should
be shielded from the impact of adapting the latency/frequency
ratio of the hardware units to the target technology.
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Fig. 2. A system-level organization of an ASVP-based core.

In this work we present a new technique that dramatically reduces
control overheads in the architecture. In our setting we employ
an embedded simple scalar CPU (8-bit PicoBlaze 3) to control a
complex vector processing unit (VPU) by issuing wide (horizontally
encoded) instructions to it. Although this technique is general, many
instructions in the scalar CPU are often required to setup wide vector
instructions for VPU. If the setup time in sCPU is not overlapped by
a computation in VPU, the efficiency of the architecture is reduced.
There are at least two classical solutions to the problem: A: increase
performance of the simple scalar CPU; or B: issue vector instructions
directly from the program memory as in traditional vector processors.

Wrt. A: Increasing performance of the scalar CPU would certainly
mean a relatively lengthy CPU design or selection process, with an
uncertain outcome. Disruptive changes in the architecture would slow
down other ongoing development.

Wrt. B: In ASVP vector instructions are very long: in the typical
configuration in this paper the length is 203 bits. As it is not feasible
to have 203-bit wide program memory, some kind of an encoding or
compression technique would have to be developed.

Instead a hybrid scheme was devised: to speed up common cases
vector instructions can be loaded from a new configuration table
directly into the VPU issue buffer. Two crucial tricks are employed
to reduce the hardware size: (1) The new table cannot express all
possible configurations, but only those used most often. In that
case, the original direct sCPU configuration mechanism is used in
addition to the new one. (2) To reduce the configuration bit width
the new table is organized in two levels. The second level (‘vector
instructions’) indirectly references the first level (‘vector definitions’),
thus reusing the first-level ‘vector definitions’ in many second-level
‘vector instructions’.

The paper is organized as follows: We begin by related work in
section II, and continue with a general description of the ASVP
in section III. In section IV the new configuration mechanism is
described, and the evaluation is given in section V.

II. RELATED WORK

FCUDA [3] is a source-to-source compiler from NVidia’s CUDA
language to synthesizable AutoPilot C. Building on FCUDA, a high-
level parameter space exploration tool is presented in [6]. The tool
first builds a resource and clock-period estimation models by actually
synthesizing a small number of sample configurations. The models
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Fig. 3. Controller in ASVP. Simple CPU (sCPU = 8-bit PicoBlaze 3) issues
vector instructions to the VPU, but with a maximal bandwidth of only 8 bits
per 2 clock cycles (‘8b/2cc’). Alternatively, frequent configurations can be
preloaded from a new configuration table with a much higher bandwidth of
12 bits per cycle.

are used in a binary search heuristic to find the optimal FCUDA
compiler/synthesis option setting.

Vector processing was shown to be a good match for embedded
applications. In [7] the VIRAM vector processor was evaluated using
the EEMBC multimedia benchmark suite, and it was found (for
example) to outperform VLIW processors by a factor of 10. The
original VIRAM chip is 0.180µm custom design clocked at 200 MHz,
1.6 GFLOP single-precision performance, with an on-chip 13 MB 8-
bank embedded DRAM (a crucial feature). The large multi-banked
local memory is used as a software-controlled staging buffer that
balances the latency/bandwidth ratio of the memory hierarchy.

Following the success of VIRAM, several vector processors were
implemented in FPGAs using the VIRAM ISA. VESPA [8] is design-
time configurable soft-core implemented in Stratix-I and -III FPGA.
The processor allows ISA subsetting, and some of the primary design
parameters that affect both performance and resource usage can be
configured. VIPERS [9] is similar to VESPA, but it is less strict
to VIRAM ISA compliance, and more tailored to the FPGA target
technology. It offers a few new instructions to take advantage of the
MAC (multiply-accumulate) and BRAM units in FPGAs.

III. APPLICATION-SPECIFIC VECTOR PROCESSORS (ASVP)

A. System-Level Organization

The system-level view is presented in Figure 2. Similar to stream-
ing architectures (Stanford Imagine [10], IBM Cell [11]), the execu-
tion control is hierarchical:

1) Task scheduling is dedicated to the Host CPU (e.g. MicroBlaze).
Optional inter-core synchronization is handled by the Commu-
nications Backplane (δ).

2) Scheduling of the vector instructions is realized in a simple
scalar control processor (sCPU) embedded in each ASVP core
(Figure 3). The sCPU forms and issues wide instruction words
(α) to the Vector Processing Unit (VPU, Figure 4).

3) Data path multiplexing and vector processing is realized au-
tonomously in the VPU. The unit handles both the vector-linear
and vector-reduction operations, as well as local memory banks
access scheduling (β).

The memory hierarchy is exposed on two levels:



1) Global off-chip shared memory is accessed through the Stream-
ing DMA engine. In the Xilinx technology the engine uses the
MPMC (Multi-Port Memory Controller) and NPI (Native Port
Interface). The engine is programmed by the sCPU in each
ASVP core (γ), and delivers data into the ASVP local memory
banks.

2) Local storage in each ASVP is realized using multiple memory
banks (BlockRAMs in FPGA). The Vector Processing Unit can
access all the banks in parallel (β).

The on-chip local storage is used as the working-set staging buffer.
A kernel function running in the ASVP accesses data with non-unit
strides, and often the same data is reused multiple times in one
computation run (temporal locality). In contrast, off-chip memory
(DDR DRAM) has high latency, and it delivers high bandwidth only
when unit-stride long data arrays are transferred.

B. Vector Processing Unit (VPU)

Figure 4 shows the (simplified) structure of the Vector Processing
Unit (VPU). The VPU fetches data vectors from the local memory
banks, processes them, and stores the result back. The memory banks
are dual-ported: one port of each bank is connected to VPU, the
other to the Streaming DMA engine. Hence it is possible to overlap
computations and data transfers in the same bank. In the default
configuration each bank is a flat array of 1024 32-bit words, suitable
for holding single precision floating-point values.

Vectors are extracted from the memory banks by the Address
Generators (AG). The full hardware configuration of the VPU uses
two AGs for each operand channel. The main AG 0-3 handle basic
addressing modes: linear or stridden (increment 6= 1) access
(the increment can be negative), with lower and upper wrap-around
bounds (overflowing the upper bound resets the pointer to the lower
bound, and vice-versa). The second set of AG 4-7 is for indexed
accesses. These AGs have the same configuration registers as the
main AGs, but the data stream (η0−3) they read from the bank
memories is passed on to the corresponding main AG. There it is
used as indices added to the local addresses being sent down to
the memory bank. Note that the Figure 4 shows a slightly modified
architecture with only one shared indexing AG 4 to save resources.

The architecture does not contain a traditional vector register file
as it is notoriously cumbersome and inefficient to implement it in an
FPGA. Even the simplest 3-port (2R-1W) register file requires dupli-
cate (data-redundant) dual-ported BlockRAMs. Instead we employ a
multi-banked local store with a crossbar. In the default configuration
with 4 memory banks this allows to read/write up to 4 values at a
time. Further, the local memory banks are not statically partitioned
into architectural vector registers. Applications are free to partition
the available memory into vector variables: some take advantage of
few very long vectors (e.g. FIR, matrix multiplication), other prefer a
lot of shorter vectors to implement complex computation (e.g. image
segmentation).

Several vector operands of an instruction can be placed in the same
memory bank. The crossbar automatically handles the time-domain
access scheduling when requests from the Address Generators cannot
be satisfied by the switch matrix in the space domain.

C. Data Flow Unit (DFU)

The Data Flow Unit (DFU) performs the actual computations on
vector streams. A DFU operation is controlled by three fields from
the vector instruction word α (Figure 4, see the top right corner):
(1) operation code, (2) vector length, and (3) number of repetitions.
The ‘number of repetitions’ field allows to automatically restart the

same operation multiple times to create a ‘batch’ of operations.
Obviously, this trick lowers the total number of distinct vector
instructions that must be issued by the sCPU. More importantly,
address generators are not rewound in between the operation restarts.
Thus by properly setting the AG op-code fields it is possible, for
example, to compute one result row in a matrix multiplication using
a single DFU instruction.

The Data Flow Unit is the primary target of the application-specific
customization effort. First, a set of (vector) operations required by an
application algorithm is identified. Based on it an architecture model
is constructed, and the application is vectorized.

All application-specific vector instructions are defined as a com-
position of a control loop and an embedded static data-flow graph.
Three types of control loops are recognized: (a) element-wise func-
tion mapping (e.g. vector addition), (b) full reductions (e.g. vector
summation), and (c) prefix reductions (e.g. cumulative summation).

Static acyclic data-flow graphs are used to represent a single
compute iteration of a customized operation. Graph nodes are im-
plemented in hardware by pipelined compute units to achieve good
performance (such as a floating-point adder or multiplier). (For
example, depending on the technology, the latency k of the FP-
ADDER is between 3 and 6 cycles.)

State automata implementing control loops in a given architecture
configuration are adapted to the pipeline latency of the underlying
hypothetical compute graphs. This is possible as the pipeline latency
k of each data-flow (sub-)graph is known a priori. Pipelining of the
element-wise loops is trivial; after the first k cycles one result is
obtained in each cycle.

Full reduction Ψ◦ of vector Ai using operator ◦ can be defined
as:

r = A0 ◦A1 ◦ ... ◦An−1 =
n−1

Ψ◦
i=0

Ai (1)

(E.g. summation is: Ψ+ ≡
∑

; r =
∑n−1

i=0 Ai).
The operator denoted ◦ represents the embedded data-flow function

with latency k◦, and it has to be associative and commutative so that
the reduction can be pipelined. Moreover there has to exist a neutral
element ε◦ (e.g. ε+ = 0). Then we can write (for the case k◦ = 2):

r = ε◦ ◦A0 ◦A1 ◦ ... ◦An−1 = (2)

= (ε◦ ◦A0 ◦A2 ◦ ...) ◦ (ε◦ ◦A1 ◦A3 ◦ ...) (3)

The last form leads to a hardware sub-circuit model labeled ‘full
reduction’ in Figure 4 in the DFU block.

D. Practical Example

In the Image Segmentation (IMGSEG) application there is an
operation that locates the minimal (maximal) value in a given vector
of floating-point numbers. The operation either returns the value
(then it is VMIN, VMAX), or the integer index where the value is
located (INDEXMIN, INDEXMAX). The integer index can be used
in subsequent operations for indexed accesses in address generators.

These operations can be efficiently implemented as full reductions.
First we define a scalar function Min(a, b) that simply returns
the lesser of the two arguments. The function is commutative
(Min(a, b) = Min(b, a)) and associative (Min(a,Min(b, c)) =
Min(Min(a, b), c)). The neutral element is εMin = +∞ because
Min(a,+∞) = a. Thus we can place VMIN ≡ ΨMin. The logical
composition is shown in Figure 4.

Another example of application-specific vector instructions are the
VCONVR/VCONVG/VCONVB instructions. The instructions take a
32-bit pixel, extract a given 8-bit colour (R, G, or B) from it, and
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TABLE I
A SAMPLE OF OPERATIONS IMPLEMENTED IN THE DFU. TYPE:

M=ELEMENT-WISE FUNCTION MAP, FR=FULL REDUCTION

Operation Type Definition
VCOPY M Ai ← Bi

VADD M Ai ← Bi + Ci

VMUL M Ai ← Bi · Ci

VMAC M Ai ← Bi · Ci + Di

VSUM FR A0 ← Ψ+(Bi)
DPROD M+FR A0 ← Ψ+(Bi · Ci)
VMIN FR A0 ← ΨMin(Bi)
INDEXMIN FR A0 ← Arg{ΨMinBi}
VCMPLT M Ai ← (Bi < Ci) ? True : False
VSELECT M Ai ← (Bi 6= 0) ? Ci : Di

VCONVR M Ai ← int2float((Bi >> 16)& 0xFF)

convert the colour to a floating-point value. Using a conventional
RISC vector ISA (e.g. VIRAM) each operation would be imple-
mented using a sequence of at least 3 instructions (bit mask, shift,
float conversion).

Table I lists some other vector instructions we have implemented
for the IMGSEG application. The DPROD operation is the dot-
product that is very useful for implementing matrix multiplications.
The VCMPLT (compare-less-than) operation compares two vectors
element-wise and returns a vector of boolean values. The VSELECT
operation is a vectorized conditional ternary operator from the C
language.

Given a set of operations and their high-level specifications as
in the table, the hardware implementation of the customized DFU
can be generated. Currently this is done mostly manually in VHDL,
however, it should be possible to synthesize the DFU automatically
in a tool. This is left as a future work.

IV. PROGRAMMING INTERFACE

A. Basic Direct-Access API Functions

Figure 3 shows the functional organization of the embedded
controller that issues vector instructions to VPU. There are two
distinct instruction sets in the architecture. The control sCPU executes
a classical scalar ISA, and it is programmed in the C language.
Currently the architecture uses the 8-bit PicoBlazeTM processor as
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the sCPU, and we have developed an optimizing C compiler in the
LLVM framework for the PicoBlaze target [12]. The VPU executes
vector instructions (denoted α in the figures); they are prepared by
sCPU in a so-called ‘instruction forming buffer’. The forming buffer
is an sCPU I/O periphery, and typically several sCPU instructions are
required to setup the next vector instruction for VPU in the buffer.
Ideally the preparatory steps are finished before the previous vector
instruction has completed, so that the sCPU and VPU execution is
fully overlapped.

Table II lists the primary C API functions that are used in the
sCPU to access the vector unit. The API functions are divided into
three ‘levels’. Level 0 functions (Figure 7) directly access the vector
instruction forming buffer as external registers via the sCPU I/O
facilities. For example, the pb2dfu set cnt() function is defined in
C library this way:

1 /∗ ∗ S e t t h e ( i n p u t ) v e c t o r l e n g t h . ∗ /
2 s t a t i c i n l i n e void p b 2 d f u s e t c n t ( u i n t 1 6 t c n t )



TABLE II
THE PRIMARY C API FUNCTIONS USED TO ACCESS (PROGRAM) THE VECTOR UNIT FROM THE SCPU.

Level API Function in C in sCPU Description
0 void pb2dfu_set_cnt(uint16_t cnt); Set the (input) vector length.
0 void pb2dfu_set_repetitions(uint8_t nrep); Set the number of repetitions of a vector operation (batch

length).
0 void pb2dfu_set_addr(uint8_t ag, uint16_t addr); Set the base address of the vector operand ag.
0 void pb2dfu_set_bank(uint8_t ag, uint8_t mbank); Select the bank (mbank) for the specified operand ag.
0 void pb2dfu_set_inc(uint8_t ag, int16_t inc); Set the stride of the vector operand ag.
0 void pb2dfu_set_agflags(uint8_t ag, uint8_t flags); Set the operation mode (flags) in the address generator

(operand).
0 void pb2dfu_start_op(uint8_t opcode, uint16_t cnt); Start the vector operation, with the given vector length.
0 void pb2dfu_restart_op(uint8_t opcode); Start the vector operation.
0 uint8_t pb2dfu_wait4hw(); Wait until the vector op. has finished.
1 void pb2dfu_set_vector(uint8_t ag, uint8_t vdi); Load the operand ag with the vector defined at the index

vdi in the Level 1 table (Figure 8)
2 void pb2dfu_start_insn(uint16_t insn); Load AGs 0, 1, and 2 indirectly through the Level 2 and

Level 1 tables, and start the operation defined in the Level 2
table (Figure 9).
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for (int i = 0; i < iter; i++) {
pb2dfu_start_insn(INS_v1__x_squared);
pb2dfu_start_insn(INS_v2__y_squared);
pb2dfu_start_insn(INS_v3__v1_plus_v2);
pb2dfu_set_inc(DFUAG_2, 0);
pb2dfu_start_insn(INS_v4__v3_lt_4);
pb2dfu_start_insn(INS_v5__iter_lt_mi);
pb2dfu_set_inc(DFUAG_2, 1);
pb2dfu_start_insn(INS_v6__v4_and_v5);
...

}
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Fig. 6. Toolchain and the indirect configuration table. The configuration memory (right side) is 512 x 32 bits with two sections. The first 256-word
section contains vector definitions for Level 1 APIs. The second section contains (partial) vector instructions for Level 2 APIs. The contents is specified in a
text source code and assembled.

3 {
4 /∗ OUTPUT va lue , ( p o r t ) ∗ /
5 o u t p u t p o r t ( c n t & 0 x f f , REG DFUVECL L ) ;
6 o u t p u t p o r t ( c n t >> 8 , REG DFUVECL H ) ;
7 }

Our optimizing C compiler will completely inline the function. For
example, to set the vector length of the next vector instruction to 400
elements the program calls pb2dfu set cnt(400);. This is compiled
down to an inlined assembly sequence:

1 load s4 , −112
2 output s4 , 33 ; 33 = REG DFUVECL L
3 load s4 , 1
4 output s4 , 34 ; 34 = REG DFUVECL H

Inlining not only removes the call/return overhead, but (when
properly used) it typically also improves the register allocation in
the caller function.

The Level 0 API functions are general as they provide full access
to all the hardware functions. However, even with an optimizing
compiler, the generated sCPU instruction sequence and the I/O is

very elaborate. This was found to be a critical factor for the Image
Segmentation (IMGSEG) kernel (details below). We implemented
the sCPU using the PicoBlaze 3 processor which executes one 8-
bit instruction in two cycles. In Spartan 6 the sCPU is running
at 50MHz; its performance is only 25MIPS. On the contrary, the
VPU’s peak performance (in A4M4@125M) is 250MFLOPs, and it
can output 125M-elements/s. IMGSEG executes 58 vector operations
that collectively take 2790 cycles of the DFU time (counted in the
f0 domain), thus on average there are only 48 cycles of sCPU
execution that are fully overlapped between two vector operations.
In 48 cycles PicoBlaze 3 executes only 24 instructions. To load a
single 16-bit value into the vector-instruction forming buffer (e.g.
AG initial addresses are usually changed between two succeeding
operations), the PicoBlaze processor has to execute 4 instructions
(2xLOAD, 2xOUTPUT). Thus, the many instructions needed in sCPU
to prepare the next vector instruction cannot be overlapped with
useful computation in VPU.
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B. New Indirect Configuration Tables

Histogram plot in Figure 5 shows the frequency of alterations of
op-code fields between two consecutive vector instructions in the
Image Segmentation kernel. The ‘AGn.addr’ and ‘AGn.msel’ fields
are changed very often from one vector instruction to another for
they define the starting address (addr) and bank (memory select) of a
vector variable in the local memory. Furthermore, address generators
(AGs) 0, 1, and 2 are accessed most frequently, while the other
configuration parameters are changed only occasionally.

Hence we implemented a new two-level configuration table to
speedup the process of setting up the vector instructions in the form-
ing buffer. This new configuration mechanism does not supersede the
existing Level 0 functions as it is less general, but rather complements
it.

The first level of the new table stores definitions of vectors
(Figure 8), namely their starting address (10 bits), the memory bank
(2 bits), and the vector length (10 bits; currently not used). The second
level stores configurations for address generators 0, 1, and 2 as three
8-bit indices into the first-level table, and an 8-bit vector operation op-
code (Figure 9). Both levels are implemented as a single 512 x 32-bit
local memory (FPGA BlockRAM). The first 256 words are reserved
for the Level 1 table (vector definitions), and the second 256 words
are for the Level 2 table.

A Level 1 (Figure 8) API function pb2dfu set vector(uint8 t ag,
uint8 t vdi) can be used to load the fields ‘addr’ and ‘msel’ of
any address generator ag with the vector definitions provided at an
index vdi (vector definition index) in the table. If other than the
two common AG fields have to be loaded (i.e. increment, lo bound,
hi bound, flags), the Level 0 APIs must be used.

A Level 2 (Figure 9) API function pb2dfu start insn(uint16 t insn)
loads address generators 0, 1, and 2, and then automatically starts
a vector instruction. First, the specified row insn is fetched from
the Level 2 section of the configuration table. It contains three vdi
indices for AGs 0, 1, and 2. These are sequentially fetched from the
Level 1 section and loaded into the corresponding AGs. Finally a
vector operation specified in the insn row is issued to the hardware.
Although the configuration table is indexed sequentially, the whole
process is accomplished much faster that by using solely the Level 0
API functions in sCPU.

Figure 6 shows the toolchain flow. At the left an algorithm is
expressed as a hypothetical static data-flow graph. Boxes represent
vector variables, and ovals represent vector operations. The graph
is implemented in a textual source code as shown in the middle of
the picture. The source code comprises (a) vector definitions, (b)
vec. instructions definitions, and (c) sCPU firmware. The (a) and (b)
source is processed by a special assembler that generates the contents
of the configuration memory. The firmware source is compiled by
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Fig. 8. Level 1: Indirect pre-load of a vector definition into an address
generator (AG).
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Fig. 9. Level 2: Execution of a DFU instruction which preloads AGs 0-2
and the op-code field.

the C toolchain. Features of the original data-flow graph that cannot
be encoded in the configuration memory are implemented in the
C source as direct Level 0 API calls. For example, the fact that
variables ‘C4’ and ‘MI’ are scalar (1 element) is implemented by
setting the increment to 0 in AG2 using pb2dfu set inc() call. Should
an algorithm frequently change increments in AGs, the field could
be implemented in the Level 1 table to speed up the configuration
process.

V. EVALUATIONS

A. Technology Scaling

The ASVP architecture was ported to several generations of
the Xilinx FPGA technology: Virtex 5 (XC5VLX110T-1), Virtex 6
(XC6VLX240T-1), and Spartan 6 (XC6SLX45T-3). The ASVP core
is divided in two clock domains: (1) The sCPU and the configuration
interfaces are clocked at the base frequency f0. (2) The Vector
Processing Unit is clocked at fV PU . Generally f0 ≤ fV PU . As the
sCPU is part of a wider ecosystem with which it has to communicate
(the γ, δ links in Figure 2), and also because the PicoBlaze processor
that implements the sCPU operates in lower frequency ranges, it is
clocked at the system base frequency f0. On the contrary, the VPU
is coupled only through the command/status link α that transfers the
vector instruction word to the VPU.

The base frequency f0 is determined by external factors, such as
the System-on-Chip platform and the Host CPU (e.g. MicroBlaze).
For simplicity we assume here f0(Spartan6) = 50MHz and
f0(Virtex5 + 6) = 100MHz.

The maximal fV PU is determined by the level of pipelining in
the data paths and the routing requirements. The separation of the
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Fig. 10. Execution times in microseconds for the (a) Mandelbrot Set and (b) Image Segmentation kernels, in Virtex 5, 6, and Spartan 6 technologies and
the corresponding frequency/latency ratios. The first bar in each double-bar column represents the situation when only the direct Level 0 API is used, the
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M2 M3
A3 100
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A5 166
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(a) Virtex 5

M2 M3
A3 100
A4 150
A5
A6 200

(b) Virtex 6

M3 M4
A2 50
A3 <125
A4 125

(c) Spartan 6

TABLE III
THE MAXIMAL FREQUENCY IN MHZ DEPENDS ON THE PIPELINE DEPTH.

Ax = FP-ADDER LATENCY, Mx = FP-MULTIPLIER LATENCY.

DFU and AG units by FIFO queues allows to pipeline the two VPU
parts independently. For example, in the high-speed mode additional
registers are inserted between the crossbar switch and the memory
banks to improve BlockRAM output delays. Ideally, increasing the
pipeline latency (k◦) of a compute unit (such as FP-ADDER) by
factor S should also increase the maximal operating frequency by
the same factor.

B. FPGA Synthesis Experimental Results

To determine the technology scaling characteristics the ASVP core
was instantiated in FPGA in a given configuration, and the maximal
operating clock frequency fV PU was iteratively lowered until the
FPGA synthesis process (including place, route, and timing analysis)
finally succeeded. Table III summarizes the results for Virtex 5, 6
and Spartan 6 technologies. The ASVP configuration is expressed
in AxMy notation: Ax specifies that the FP-Adder has latency
x, and similarly My refers to the FP-Multiplier latency y. The
maximal operating frequencies of the VPU are 166MHz, 200MHz,
and 125MHz, for V5, V6, and S6 technologies, respectively.

Area: In the fastest Virtex 6 A6M3@200MHz node the default
configuration of the ASVP without the configuration tables for the
Level 1, 2 APIs the core consumes 1525 slices. The configuration
tables increase the resource usage by 8% to 1638 slices.

Techno. Kernel Level 0 API only Levels 0, 1, 2 Speed-up
sCPU Total sCPU Total sCPU Total

Virtex 5, 6: sCPU at 100MHz
A5M3
@166M

Mandel 160µs 1448µs 18µs 1305µs 8.8x 1.1x
ImgSeg 24µs 69.7µs 2.2µs 48µs 11x 1.5x

A6M3
@200M

Mandel 153µs 1223µs 18µs 1088µs 8.5x 1.1x
ImgSeg 26.9µs 67.9µs 2.2µs 43.3µs 12x 1.6x

Spartan 6: sCPU at 50MHz
A4M4
@125M

Mandel 335µs 2042µs 35.1µs 1742µs 9.5x 1.2x
ImgSeg 60.3µs 116.1µs 4.6µs 60.7µs 13x 1.9x

TABLE IV
SPEED-UPS IN THE FASTEST CONFIGURATIONS (SUMMARY).

C. Applications Benchmarks

Given the technology performance characteristics determined by
the FPGA implementation in Table III, we simulated the cycle-
accurate synthesizable VHDL model of the ASVP core in the Model-
Sim simulator to measure the execution time and dynamic profile of
several benchmark kernels. The benchmark programs compute in the
floating-point single precision format. Bar plots in Figure 10 give
the total execution time in microseconds for different technology
nodes (latency and frequency). The total execution time is split
into four segments in the bars: D: execution on sCPU that was
not overlapped with computation in DFU; C: DFU has full pipeline
(useful computation); B: DFU pipeline bubble due to the reduction
windup; A: DFU stall (input data not available).

In each double-bar column the first bars represent a core without
the proposed indirect configuration tables, i.e. when only Level 0 API
is used in kernels. In the second bars all the API levels are used.

The minimal kernel execution time in Virtex 5, 6 caused by the
fixed execution speed (f0) of the sCPU is presented in the middle
double-column labeled ‘Limit’. The time is measured in simulation by
setting fV PU to a very high value (10000MHz), hence fully exposing
the sCPU latency.

Mandelbrot Set (MANDEL): The MANDEL program computes
the Mandelbrot set for a given set of points (a tile) (Figure 10a).



The output of the kernel is an array of the number of iterations
executed for each point until the point is known not to be in the
set. The tile size is 200 points, and the maximal number of iterations
before a forced escape is 50. The kernel speculatively executes all
50 iterations for each point, hence its execution time is independent
of the actual part of the set being computed (this is advantageous for
benchmarking, albeit suboptimal for real-world use). The body of the
iterative loop consists of 18 vector instructions. The kernel does not
contain reduction operations (hence segment ‘B’ is zero), and given
it processes relatively long vectors (tile size 200 elements), it scales
quite well because even for higher fV PU the sCPU has enough time
to prepare another vector instruction in the forming buffer. When the
Level 1,2 APIs are employed they improve the total execution time
by roughly 10% (not counting the hypothetical ‘Limit’ case).

Image Segmentation (IMGSEG): The IMGSEG program imple-
ments image foreground/background pixel motion detection (seg-
mentation) using the algorithm presented in [13] without shadow
detection and with several modifications. The decision that a pixel
from the current frame represents foreground or background depends
on statistical models and their mixture. Each pixel is modeled by
a mixture of K strongest Gaussian models of background (K=4 in
our implementation); Gaussian models (mean values and variance)
represent a state (colour) of the pixel. Each model also contains
the weight parameter that specifies how often a particular model
successfully described the background in the pixel. The algorithm was
vectorized, and the vector length was 50 pixels. Conditional branches
were vectorized by speculatively computing both possibilities and
then VSELECTing the correct value per each element.

When only the original Level 0 API is used the execution time
of the kernel (Figure 10b, Table IV) is largely determined by the
sCPU speed. For example, in Spartan 6 A4M4@125M technology
the VPU is idle 52% of time. The proposed indirect configuration
tables in Level 1, 2 APIs improve the absolute execution times
tremendously: by 30% on average, and almost by 2x (48%) in
Spartan 6 A4M4@125M technology. In the later case the sCPU
overhead itself is reduced by 13x from 52% of the absolute execution
time (60.34µs of 116.1µs) down to 8% (4.58µs of 60.7µs).

Another positive effect of the new APIs is the sCPU code size
reduction. The Level 0 APIs-only kernel had to be written manually
in an assembler as the compiler-generated code was too large for
a 1024-word program memory of the PicoBlaze 3 processor. Even
then only 58 words of the program memory remained free. On the
contrary, the new version that uses Level 1, 2 APIs is written entirely
in C and still 236 words of the program memory remain free.

VI. CONCLUSION

The ASVP compute core is composed of a simple scalar CPU
and a customizable floating-point vector processing unit (VPU). The
scalar CPU prepares and issues wide (horizontally encoded) vector
instructions to the VPU. Previous experience showed that in complex
compute kernels the scalar CPU is often the bottleneck that limits
VPU instruction throughput.

In this paper we noticed that typically only a small subset of the
vector-instruction fields are modified between two operations. (This
does not mean, however, that the rest of the fields are superfluous.)
Hence, to speed up the common case, a new memory (BlockRAM)
table was introduced that stores the constant values for the critical
(most frequently changed) fields of vector instructions. A simple
automaton is commanded by the scalar CPU to fetch a selected row
from the table and patch it in the instruction buffer.

The new configuration table is logically organized in two sections,
corresponding to two indirection levels. In the first section vector
extents in local memories are defined as {bank, start, length} triples.
In the second section common three-operand vector instructions are
defined; the operands (= address generator parameters) are encoded as
indices into the Level 1 section. Hardware functions (configurations)
that cannot be invoked via the new mechanism are accessed by
direct writes from the scalar CPU. The presented technique can be
transferred to similar use cases that employ an embedded CPU that
controls complex peripherals.

The technique was implemented and evaluated in FPGAs (Virtex 5,
6, Spartan 6) using the Mandelbrot Set and Image Segmentation
kernels running in the ASVP core. Resource cost of the new hardware
function is around 100 slices in Virtex 6. The scalar CPU overhead,
i.e. the time not overlapped by a useful computation in VPU, is
reduced typically 9x (max. 13x). This leads to absolute time reduction
(speed-up) of 10% (min 6%, max 15%) for the Mandelbrot Set kernel,
and 30% (min 16%, max 48%) for the Image Segmentation kernel.
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