
Composing Data-driven Circuits Using Handshake
in the Clock-Synchronous Domain

Jaroslav Sykora
Institute of Information Theory and Automation (UTIA) of the ASCR

Pod Vodarenskou vezi 4, Prague, Czech Republic
Email: sykora@utia.cz

Abstract—We present a technique for modelling and synthesis of fine-
grained data-driven circuits in the clock-synchronous hardware, such as
the field programmable gate arrays (FPGA), called the Flow-Transfer
Level (FTL). The distinguishing property of the FTL technique is that it
does not rely on FIFO queues to handle flow synchronization between the
components (called operators). The communication channels, called pipes,
employ conceptually a two-state handshake protocol. The handshake be-
haviour of each operator is defined logically using dependency subgraphs
that are symmetrical for producers and consumers. The original data-flow
netlist of operators is transformed into a global control dependency graph.
Cycles in dependency graphs are allowed as long as they do not constitute
real data dependencies but only dependencies in promises of handshake
completions. A method is given that recursively eliminates these cycles. We
demonstrate the feasibility of the approach in a prototype compiler that
transforms an FTL netlist into a synthesizable VHDL code. A comparison
to a manual RTL VHDL design shows that our technique is very light-
weight, yet it has a potential of increasing the design abstraction level.

I . I N T R O D U C T I O N

The contemporary digital design in the clock-synchronous tech-
nology is largely based on orchestrating the data movements between
registers, with computation taking place in the combinatorial data
paths, and the control implemented using cooperating finite state
machines. The fragility of this approach–from the design, development,
and debug viewpoints–stems from the formal disconnect of the data
and control paths: each is specified in RTL HDLs (such as VHDL,
Verilog) using different set of registers and wires.

In this work we propose a data-driven approach in which the
computation is triggered by the availability (arrival) of data. We
call the technique the Flow-Transfer Level (FTL) technique. The
data-driven approach is by no means a new idea; it is natural in
asynchronous circuits technology wherein the data arrival event serves
to trigger computation in a physically self-timed block. In the clock-
synchronous technology the advantages are less apparent. The initial
aim of our research is to capture the communication dependencies
among components (operators) in an explicit form, so that the cycle-
by-cycle timing of the circuit is decoupled from its communication
patterns. This by itself does not immediately improve the physical
implementation results (resource costs, clock timing), but it could later
uncover opportunities of higher-level optimisations. Our evaluation
shows that the approach does not incur an overhead over manual RTL
VHDL designs.

A couple of examples of data-driven circuits composed from
primitive components, called operators, is in Figure 1. The patterns
are: linear (sequential) pipeline, concurrent pipelines (using the
Fork/Join operators), alternate pipelines (the if-then-else block, using
the Switch/Select operators), feedback pipeline (the while-do block).
Similar patterns have been used in asynchronous systems [1]. In the
clock-synchronous technology the delay of the primitive operators is
conceptually zero time (they are combinatorial), and the delay of the
storage cell operator is 1 clock cycle.

A. Handshake

In asynchronous technology a channel handshake event starts
processing in a component. In bundled data protocols the request

operator operator
pipe

Linear pipeline (sequence)

Fork Join

Parallel pipelines

if-false if-true

TF

condition

Switch

Select

If-then-else block
(alternate pipelines)

Select
(priority)

condition

Switch

body

Cell

12

TF

Loop (feedback pipeline)

Fig. 1: Examples of data-driven pipeline patterns.

and acknowledge wires are commonly bundled with the data wires to
form a communication channel. The protocol provides the time-frame
for the data transfer. Besides that, the individual components typically
exploit the protocol to regulate the flow of data by the back-pressure
mechanism: a busy component would not complete a handshake on
the input channel until the output channel has accepted the outgoing
data.

In the clock-synchronous technology the timing is provided
implicitly by the clock signal. A handshake protocol is used exclusively
to signal the data availability in the producer and the readiness in the
consumer. Hence, just two high-level (logical) states, denoted φ here,
must be recognized: either both the producer and consumer are ready
simultaneously and the data flows between them (φ = 1), or any one
of them is not ready and the data flow stops (φ = 0). The roles of
producers and consumers are symmetrical and equal.

In FTL the communication channels are called pipes. Pipes are
unidirectional for data, state-less (without internal buffers), and point-
to-point (no branching). For data-transfer modelling in netlist graphs
(e.g. in Figure 1), pipes are the edges, and operators are the nodes.
However, for handshaking purposes, pipes are modelled as nodes in
dependency graphs. The edges in dependency graphs are inferred

Cell
(v, ~d)

A

B

Empty
v=0

Full
v=1

φA

φA ∧ φB

φA ∧ φB
A

B v

∨

Fig. 2: The cell operator (left), its state transition diagram (middle),
and the handshake control dependencies among the pipes (right).

based on the handshaking (control) behaviour in FTL operators.

B. Storage

A cell is a primitive operator that contains a storage place. An
internal register stores a data vector ~d ∈ Bn (where B is the boolean
set {0, 1}) and a single validity bit v ∈ B. The schematic symbol and
a state diagram are in Figure 2 on the left and in the middle. A cell is
basically a 1-deep FIFO queue, with a 1 clock-cycle latency. When it
is empty (v = 0) it may store incoming data and become full. When
it is full (v = 1) it will not accept incoming data unless the stored
data is concurrently being off-loaded (accepted) in the consumer at
the output. The semantics provides the necessary elasticity for data-
driven circuits: data is preserved when not immediately required, and
the stored data is not overwritten until consumed.

C. Problem Description and Motivation

1) Data-flow functional composition: Consider a trivial feedback
pipeline constructed out of two cells depicted in Figure 3. The
intuitive semantics is that the cells should periodically exchange
the data values at each clock-cycle. This is consistent with the
semantics and the state diagram given above. The technical obstacle is,
however, that signalling dependencies in handshake controllers could
close combinatorial loops in physical hardware implementation when
pipelines converge. This problem exists e.g. in the SELF [2] protocol
discussed below.

2) Property specification and optimization opportunities: Consider
the example of an integer multiplier block, such as the one in
DSP macros in FPGAs, depicted in Figure 4. The multiplier is
combinatorial, the output data is valid only if both the inputs are
valid at the same time. Data producers on both inputs must keep the
values valid until the consumer at the output is ready to take the result.
The functionality of the two-input multiplier block can be expanded
into a Join operator and a single-input single-output compute operator.
The join operator manages solely the handshake interplay of the three
ports (A, B, C): it makes the producers on A, B and the consumer
on C wait on each other, i.e. synchronizes all of them. It does not
buffer data, nor it contains any storage element. The join operator is
transparent for data: the data output vector C.~d simply combines the
data vectors A.~d and B.~d.

Consider now a requirement to compute x2 using the multiplier
block. It is natural to use a Fork operator to duplicate X into A, B

(vL, ~dL) (vR, ~dR)

A

B

L R

A

B

vL

vR

∨ ∨

Fig. 3: Two-cell feedback pipeline (left), and the dependency graph
derived from it (right).

*

A

B

D Join
A

B
C

* D

Fork
X

Join
C

A

B
* D

Fig. 4: A two-input multiplier requires both inputs being ready
simultaneously to begin the processing. Below: To compute x2 the
pipe X is forked.

and connect them to the two-input multiplier block from a library,
as shown in Figure 4 at bottom. The fork-join combination is a null
operation (an identity) that could be later automatically optimized out
in a tool once the design hierarchy is flattened. The join operator
specifies a property that both inputs must be valid at the same time.

I I . R E L AT E D W O R K

Elasticity in circuits [3] provides tolerance to variations in
computation and communication latencies. Although it is usually
associated with an asynchronous design, it can be also implemented
in fully clock-synchronous systems [4]. For example, an elastic adder
can have data-dependent latency: it could take one clock-cycle for
short operands and two cycles for operands requiring long carry-
chain propagation. The SELF protocol [2] (Synchronous ELastic Flow)
can be used to transform a synchronous circuit into the elastic one.
This requires replacing original flip-flop registers with Elastic Buffers,
implemented as special pairs of latch-based registers (master and slave).
In the contemporary FPGA technology at least two flip-flop registers
are needed to implement one elastic buffer.

Dataflow is a well-known design paradigm in which computation
is triggered by the arrival of data. In dynamic data-flow the dependency
graph evolves in time, possibly depending on actual data values, while
in static data-flow the graph is predetermined. In synchronous data-
flow (SDF) [5] the number of data tokens consumed and produced by
each node on each invocation is specified a-priori. The static dataflow
model is extensively used in the digital signal processing (DSP)
domain to specify the behaviour of both the software (e.g. StreamIt
[6]) and hardware components (e.g. CAPH [7]). These systems usually
model each channel as a FIFO queue, and employ domain-specific
knowledge in the compiler to optimize the granularity of tasks.

Term rewriting systems (TRS) can be used to describe the
operational semantics of hardware circuits (TRAC [8], Bluespec [9]).
The goal is parallel to ours–by increasing the abstraction level the
designs are easier to comprehend and maintain. A TRS consists of a
set of terms and a set of rewriting rules. A rule consists of a pattern, an
optional predicate, and an action (a rewrite) that is carried out on the
system state if the rule fires. The effects of actions are atomic; several
terms may fire simultaneously only if their actions do not conflict.
Term rewriting systems are defined as non-deterministic. During
hardware synthesis the compiler extracts parallelism and creates a
deterministic schedule of actions.

I I I . H A N D S H A K E F O R M A L I Z AT I O N

This section describes the formal apparatus for specifying the
handshake (as opposed to the data-processing) behaviour of the FTL
operators. Capital letter symbols A,B,C, ... denote pipes or ports.
Their values in B ≡ {0, 1} indicate the handshake state: 1 means the
handshake is successful (data is transferred), 0 means the opposite.

A. Dependency Graphs

As the pipes () propagate handshake dependencies among
the endpoints simultaneously in both directions, we need a mechanism
to resolve control cycles. Original FTL graph, composed of pipes and
operators, is transformed into a dependency graph. In dependency
graphs each pipe (an edge in the FTL graph) is replaced by a wand
node (), and each operator (a node in FTL graph) is replaced by edges.
The dependency graph is typically cyclic at first. Using two basic
transformations described below the cycles are gradually removed,
and new wand nodes may be introduced during the process. The
final acyclic dependency graph is mapped directly to a control state
machine in the circuit.

The wand nodes in dependency graphs behave like wired and:
all incoming edges are conceptually concatenated using the and (∧)
boolean operator; all outgoing edges are driven by the result. In picture
below there are two operators L, R, and a pipe A. The operators
‘drive’ the pipe handshake state to x, y ∈ {0, 1}. The corresponding
dependency graph is shown on the right:

A : =	 x A : =	 y
A

L R
dep.gr.

A

x y

Dependency graphs may be given graphically, or textually with the
help of an auxiliary operator : =	. An expression ‘A : =	 x’, where A is
a dependency node representing a pipe and x is a boolean expression,
says that the handshake on the pipe A can successfully complete
unless x is false. Operators may drive (and/or sense the state of) any
pipe they connect to; multiple writes into the pipe handshake state
are unified:

{A : =	 x;A : =	 y} unify−−→ {A : =	 (x ∧ y)} (1)

Note how the symbol A in the equation above corresponds with
a pipe in the FTL graph and with a wand node in the dependency
graph. The symbols x, y, originally generated in distinct operators L,
R, are brought together to form incoming edges in the wand node.

The simple diagram above could be given a higher-level meaning
as follows: It shows a producer and a consumer operators in FTL (we
do not say which is which) connected by the pipe A. Say x = 1,
y = 0. If the producer is on the left, the diagram could be interpreted
that the producer is ready to send data (1) while the consumer on
the right is not ready (0). Or vice-versa: the consumer on the left is
ready (1) but the producer on the right is not (0). The handshake is
symmetrical. The result in any case is 0, i.e. data is not transferred
because the handshake is not successful.

B. Eliminating Cycles in Dependency Graphs

Handshake dependencies can be cyclic; it is in fact the main
feature of our approach. The key insight is that the handshake
dependency is not necessarily a data dependency (which cannot be
cyclic for obvious reasons), but rather a dependency in the promises
to transfer some data. Hence, a cyclic handshake dependency among
a group of operators is viewed positively, not as the obstacle to the
flow of data.

Consider the example in Figure 5 with three operators (boxes)
in a cyclic unidirectional handshake dependency. The dependency
runs clockwise (C depends on A, A depends on B, B depends on C).
Without any more incoming edges to the wand nodes the actual state
of the nodes will be 1, and the corresponding pipes flow data.

The two elementary graph rewriting rules for cycles removal in
dependency graphs are shown in Figure 6. The original dependency
graph is partitioned in strongly connected components (SCC). The
first rule (‘cyc.elim’) is applied to an arbitrary node A in an SCC;
the SCC is reduced by one node. The rule is a form of substitution

C : =	 A A : =	 B B : =	 C
A B

C

Netlist of
operators:

A B C

A : =	 B B : =	 C

C : =	 A

Dependency
graph:

Fig. 5: Example of three operators with a globally cyclic handshake
dependency.

A

B
x

y

f

g z

(strong component)

A’

A

B

x

y

f∧

g z

g

(strong component)

cyc.elim

A

x

y

f

A

x

y

f 1
loop elim

Fig. 6: The two elementary transformations for graph cycles elimina-
tion. A,B are wand nodes, f, g are arbitrary boolean functions.

of boolean expressions. The second rule (‘loop elim’) is applied to a
node with a loop.

C. The Cell Storage Operator, Time

The cell handshake dependency sub-graph is shown in Figure 2 at
right. The nodes A,B represent pipes, and the node v () represents
the internal state (0=empty, 1=full). The internal state is updated
separately and the driving of the node is not shown. The node ‘ ∨ ’
represents an OR gate with an inverted input. When v = 0, the node
B is driven to 0, hence the pipe B cannot flow data. Meanwhile, node
A is driven to 1 by the not-or gate, hence the pipe A could accept data
if the producer is also ready. When v = 1, the node B is driven to 1,
hence the pipe B could flow data if the consumer is ready. However, if
the consumer is not ready and it drives B to 0, this is propagated to A
which also becomes 0. This ensures that a full cell is not overwritten.

Time is a sequence of discreet, global, synchronous instants,
commonly known as the clock cycles. The dynamic behaviour is
specified only in operators with internal state. The cell internal state
v evolves to the next time instant t+ 1 according to:

t→ t+ 1 : vt+1 := φAt ∨ (vt ∧ φBt) (2)

The symbols φAt and φBt refer to the actual flow states of the pipes
A, B after the system of the static handshake equations has been
resolved.

As an example, Figure 7 shows how the initially cyclic depen-
dency graph from Figure 3 is gradually resolved using the primitive
elimination rules given in Figure 6. The final acyclic dependency
graph on the right is the input to VHDL code generation.

I V. E VA L U AT I O N

A. Compiler

The handshake behaviour of all primitive FTL operators is
specified using dependency sub-graphs (such as Figure 2 right), and,
if needed, by the additional dynamic time-dependent equation (such
as Eq. 2). We implemented a prototype compiler in Python 3 that

A

B

vL

vR

∨ ∨

Initial

A′ A

B

vL

vR

∨ ∨

∧∨

After cycle elim.

A′ A

B

vL

vR

∨

∨

After loop elim.

Fig. 7: Resolving the dependency cycle in the two-cell example in
Figure 3.

transforms FTL netlist into synthesizable VHDL code. Our compiler
first expands input FTL netlist into a global dependency graph. The
graph is partitioned in strongly connected components (SCC); cycles
in SCCs are gradually eliminated using the primitive rules in Figure 6.
The final acyclic dependency graph is translated into a Mealy automata
and printed as RTL VHDL code.

B. Design and Implementation of a Floating-point Vector Unit

We compare FPGA implementation results of a configurable
pipelined 32-bit floating-point (FP) vector processing unit designed
directly in VHDL with a design created in FTL. The original RTL
VHDL code was created as a part of our previous work [10] using a
classical RTL design flow, and optimized manually.

The central part of the FTL-based design of the vector unit–a
reduction pipeline–is shown in Figure 8. The vector unit has two data
input pipes A, B, and an output pipe Z. It can execute any of the
following operations: vector addition, vector summation, minimum,
maximum, index of the minima, index of the maxima. Only the first
operation (vector addition) uses both the inputs. The later operations
perform reduction of the input vector on A to a single scalar result.
We used the FP adder core generated in the Xilinx ISE 12.4 tool
with the configured latency of 3 clock-cycles. The vector reduction is
therefore pipelined in the unit. As depicted in Figure 8 there are two
feedback pipes: the one on the left routes adder outputs directly back
to the input, the other on the right goes through the cell Q.

The FP adder core was generated in Xilinx Coregen 12.4, the
latency was configured to 3 cycles. Functional correctness was verified
using VHDL simulation. The VHDL code was synthesised in Xilinx
XST 12.4, giving us the resource utilization report (Table I). The target
device for synthesis was Spartan 6 S6LX150T. Resource utilization in
the FTL-based unit is slightly smaller; we attribute it partly to a noise
and partly to differences in coding style. The central pipeline contains
a cascade of registers (or cells) parallel to the FP core. In the code
generated by our compiler they are recognized during VHDL synthesis
as a single shift register, which has an efficient implementation in
FPGA, but in the original hand-written code they are synthesised into
independent flip-flops.

TABLE I: Resource utilisation after FPGA synthesis.

Resource FTL manual [10]
Registers 308 430
LUTs (logic + memory) 489 (405 + 84) 719 (719 + 0)

V. C O N C L U S I O N

The approach formalizes handshake in clock-synchronous designs.
Although the communication pipes are unidirectional for data, the roles
of producers and consumers are symmetrical (equal) when negotiating
data transfers. Handshake dependencies can be transitive across a
subgraph of operators. Cyclic handshake dependencies are resolved

pi
pe

lin
ed

FP
ad

de
r

Busy?

1 2 3
Switch

Join

R L
SelectLinear

Reduce

1 2

D0

1 2

M1

Q

neutral val.
B A’

Z


select from 2

when (φM1 ∧ φA)

else from 1;

switch to 1 when φD0

else to 3 when Busy

else to 2;

Fig. 8: The data pipeline implements primarily the feedback loop for
pipelined vector reductions.

as they represent only a dependency in the promises to transfer data.
This enables modelling of feedback pipelines.

The implementation results of a vector unit designed manually
in RTL VHDL and in FTL show that the approach does not incur
overhead in resource costs or critical path. In this particular case study
the resource costs in the FTL-based design are even smaller than in
manual approach because our compiler generated code is easier to
optimize in the FPGA synthesis tool.

R E F E R E N C E S

[1] J. Sparso and S. Furber, PRINCIPLES OF ASYNCHRONOUS CIRCUIT
DESIGN – A Systems Perspective. Springer, 2001.

[2] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of
synchronous elastic architectures,” in Proceedings of the 43rd
annual Design Automation Conference, ser. DAC ’06. New
York, NY, USA: ACM, 2006, pp. 657–662. [Online]. Available:
http://doi.acm.org/10.1145/1146909.1147077

[3] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic
circuits,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 28, no. 10, pp. 1437 –1455, oct. 2009.

[4] G. Hoover and F. Brewer, “Synthesizing synchronous elastic flow
networks,” in Design, Automation and Test in Europe, 2008. DATE

’08, march 2008, pp. 306 –311.
[5] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235 – 1245, sept. 1987.
[6] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language

for streaming applications,” in In International Conference on Compiler
Construction, 2001, pp. 179–196.

[7] J. Serot, F. Berry, and S. Ahmed, “Implementing stream-processing
applications on FPGAs: A DSL-based approach,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on, sept.
2011, pp. 130 –137.

[8] J. C. Hoe and Arvind, “Hardware synthesis from term rewriting systems,”
1999.

[9] N. Dave, M. Ng, and Arvind, “Automatic synthesis of cache-coherence
protocol processors using Bluespec,” in Formal Methods and Models
for Co-Design, 2005. MEMOCODE ’05. Proceedings. Third ACM and
IEEE International Conference on, july 2005, pp. 25 – 34.

[10] J. Sykora, L. Kohout, R. Bartosinski, L. Kafka, M. Danek, and P. Honzik,
“The architecture and the technology characterization of an FPGA-based
customizable application-specific vector processor.” in DDECS. IEEE,
2012, pp. 62–67.

