The Architecture and the Technology Characterization
of an FPGA-based Customizable
Application-Specific Vector Processor

Jaroslav Sykora, Lukas Kohout, Roman Bartosinski, Leos Katka, Martin Danek

Department of Signal Processing

Institute of Information Theory and Automation (UTIA) of the ASCR, v.v.i.
Pod Vodarenskou vezi 4, Prague, Czech Republic

Petr Honzik
CIP plus s.r.o.
Milinska 130, Pribram, Czech Republic
petr.honzik @cip.cz

{sykora, kohoutl, bartosr, kafkal, danek} @utia.cz

Abstract—The traditional approach to IP core design is to use simu-
lations with test vectors. This is not feasible when dealing with complex
function cores such as the Image Segmentation case-study algorithm in
this paper. An algorithm developer needs to carry out experiments on
large real-world data sets, with fast turn-around times, and in real time
to facilitate performance tuning and incremental development.

We propose a methodology called Application-Specific Vector Pro-
cessor (ASVP). The ASVP approach first constructs a programmable
architecture customized for a given application, then employs software
techniques to develop firmware that implements the algorithm. Our
sample implementation that supports the Image Segmentation kernel is
capable of 332 MFLOPs, 400 MFLOPs, and 250 MFLOPs per coprocessor
core in Virtex5, Virtex6 and Spartan6 technologies, respectively. The
core size is roughly 1500 slices, depending on the configuration and
technology.

Keywords-Custom accelerators, vector processing, FPGA, DSP.

I. INTRODUCTION

The mainstream design-entry languages of contemporary FPGAs
are VHDL and Verilog. Synthesis from higher-level languages, such
as C [1], OpenCL [2] or CUDA [3] is difficult for two closely related
reasons: First, the FPGA design space is nearly infinite and a program
in the high-level language can be implemented in many different
ways, with wildly varying resource usage, total cycle count, and
cycle time (operating frequency). It is very difficult for a compiler to
strike the optimal configuration that minimizes the program execution
latency (absolute time). Second, even if the optimal configuration is
known, a single (re-)compilation process after an application source
code modification may take tens of minutes up to several hours to
complete, severely impacting the turn-around time of the application
development and lowering the human programmer efficiency.

A high-level overview of our approach to designing custom FPGA-
based accelerators is shown in Figure 1. We call our approach
Application-Specific Vector Processor (ASVP); it is loosely based on
the previous work [4] where it was called Basic Computing Element
(BCE). In traditional work-flows (not shown) when the source code
is modified by the developer, the accelerator must be recompiled
and resynthesized to generate a new FPGA configware (bitstream)
that can be verified. The drawback of the traditional approach is the
long synthesis time caused mainly by a slow place&route process
of the low-level tools. In our approach we abstract the custom
accelerator into a specialized firmware-programmable architecture.
In the first step the high-level source code is analyzed and domain
features are extracted. Based on the required domain features a
customized architecture is selected or newly built. The architecture is
programmable by firmware to some extent, hence minor source code
modifications can be tested quickly for they will trigger only fast

Accelerator

specification
v
Domain feature extraction,
high-level architecture model 1
selection
only when E new or existing arch. _5
new arch. “==% s
v &
Detailed architecture 8
construction E
H Firmware compilation | |8
¢y HDL 8
V (fast: ~seconds) °
Synthesize to FPGA o
(slow: ~hours) §
5 configware =
v o2
¥ ES
" QO
firmware S c
o O
> s
O ©
T =
Verify in FPGA o g
okfail? | g8

(Ok)i|i

Fig. 1. The proposed custom accelerators development work-flow. Dashed
lines indicate processes run once, full lines mark iterative paths.

(fail — iterate)

firmware recompilation. Only when an architectural change is called
for after a major source code modification, the costly re-synthesis
process must be rerun.

In this work we propose an architecture that satisfies the following
requirements:

o The architecture has to be customizable for different applications
to take advantage of the FPGA reconfigurability.

o The architecture has to support both floating-point (long-latency)
and integer (short-latency) operations found in DSP and video
applications. The long-latency FP operations, combined with the
common need of DSP applications to support vector reductions,
pose some new challenges.

o Several hardware technology nodes of different characteristics
should be supported without a need for manual software changes
in the firmware. Specifically, the firmware programmer should
be shielded from the impact of adapting the latency/frequency
ratio of the hardware units to the target technology.

Host CPU Streaming DMA
(eg. (MPMC + NPI) — iﬁiﬁ“ﬂ)
MicroBlaze) P
Str0 [Str1]
> -~
i Y
' T
]
! Application- Multi-Banked | |
| Peevectr | Locaivemory || 1
' (ASVP 0) (A,B,C, ...) : :
! i
| ' m ””” p : AsvP1 |
1 I
! Simple Vector I |
! Controller Processing | |
| Unit (VPU) : I
]
|
L e
h 4 h 4 h 4

‘ Communications Backplane ‘

Fig. 2. A system-level organization of an ASVP-based core.

II. RELATED WORK

FCUDA [3] is a source-to-source compiler from NVidia’s CUDA
language to synthesizable AutoPilot C. Building on FCUDA, a high-
level parameter space exploration tool is presented in [S]. The tool
first builds a resource and clock-period estimation models by actually
synthesizing a small number of sample configurations. The models
are used in a binary search heuristic to find the optimal FCUDA
compiler/synthesis option setting.

Vector processing was shown to be a good match for embedded
applications. In [6] the VIRAM vector processor was evaluated using
the EEMBC multimedia benchmark suite, and it was found (for
example) to outperform VLIW processors by a factor of 10. The
original VIRAM chip is 0.180um custom design clocked at 200 MHz,
1.6 GFLOP single-precision performance, with an on-chip 13 MB 8-
bank embedded DRAM (a crucial feature). The large multi-banked
local memory is used as a software-controlled staging buffer that
balances the latency/bandwidth ratio of the memory hierarchy.

Following the success of VIRAM, several vector processors were
implemented in FPGAs using the VIRAM ISA. VESPA [7] is design-
time configurable soft-core implemented in Stratix-I and -III FPGA.
The processor allows ISA subsetting, and some of the primary design
parameters that affect both performance and resource usage can be
configured. VIPERS [8] is similar to VESPA, but it is less strict
to VIRAM ISA compliance, and more tailored to the FPGA target
technology. It offers a few new instructions to take advantage of the
MAC (multiply-accumulate) and BRAM units in FPGAs.

III. APPLICATION-SPECIFIC VECTOR PROCESSORS (ASVP)
A. System-Level Organization

The system-level view is presented in Figure 2. Similar to stream-
ing architectures (Stanford Imagine [9], IBM Cell [10]), the execution
control is hierarchical: 1. Task scheduling is dedicated to the
Host CPU (e.g. MicroBlaze). Optional inter-core synchronization
is handled by the Communications Backplane (6). 2. Scheduling
of the vector instructions is realized in a simple scalar control
processor (sCPU) embedded in each ASVP core. The sCPU forms
and issues wide instruction words («) to the Vector Processing Unit
(VPU, Figure 3). 3. Data path multiplexing and vector processing is
realized autonomously in the VPU. The unit handles both the vector-
linear and vector-reduction operations, as well as local memory banks
access scheduling (8).

The memory hierarchy is exposed on two levels:

1) Global off-chip shared memory is accessed through the Stream-
ing DMA engine. In the Xilinx technology the engine uses the
MPMC (Multi-Port Memory Controller) and NPI (Native Port
Interface). The engine is programmed by the sCPU in each
ASVP core (), and delivers data into the ASVP local memory
banks.

2) Local storage in each ASVP is realized using multiple memory
banks (BlockRAMs in FPGA). The Vector Processing Unit can
access all the banks in parallel (3).

The on-chip local storage is used as the working-set staging buffer.
A kernel function running in the ASVP accesses data with non-unit
strides, and often the same data is reused multiple times in one
computation run (temporal locality). In contrast, off-chip memory
(DDR DRAM) has high latency, and it delivers high bandwidth only
when unit-stride long data arrays are transferred.

B. Vector Processing Unit (VPU)

Figure 3 shows the (simplified) structure of the Vector Processing
Unit (VPU). The VPU fetches data vectors from the local memory
banks, processes them, and stores the result back. The memory banks
are dual-ported: one port of each bank is connected to VPU, the
other to the Streaming DMA engine. Hence it is possible to overlap
computations and data transfers in the same bank. In the default
configuration each bank is a flat array of 1024 32-bit words, suitable
for holding single precision floating-point values.

Vectors are extracted from the memory banks by the Address
Generators (AG). The full hardware configuration of the VPU uses
two AGs for each operand channel. The main AG 0-3 handle basic
addressing modes: linear or stridden (increment # 1) access
(the increment can be negative), with lower and upper wrap-around
bounds (overflowing the upper bound resets the pointer to the lower
bound, and vice-versa). The second set of AG 4-7 is for indexed
accesses. These AGs have the same configuration registers as the
main AGs, but the data stream (no—3) they read from the bank
memories is passed on to the corresponding main AG. There it is
used as indices added to the local addresses being sent down to the
memory bank.

The architecture does not contain a traditional vector register file
as it is notoriously cumbersome and inefficient to implement it in an
FPGA. Even the simplest 3-port (2R-1W) register file requires dupli-
cate (data-redundant) dual-ported BlockRAMs. Instead we employ a
multi-banked local store with a crossbar. In the default configuration
with 4 memory banks this allows to read/write up to 4 values at a
time. Further, the local memory banks are not statically partitioned
into architectural vector registers. Applications are free to partition
the available memory into vector variables: some take advantage of
few very long vectors (e.g. FIR, matrix multiplication), other prefer
a lot of shorter vectors to implement complex computation (e.g. the
image segmentation).

Several vector operands of an instruction can be placed in the same
memory bank. The crossbar automatically handles the time-domain
access scheduling when requests from the Address Generators cannot
be satisfied by the switch matrix in the space domain.

C. Data Flow Unit (DFU)

The Data Flow Unit (DFU) performs the actual computations on
vector streams. A DFU operation is controlled by three fields from
the vector instruction word « (Figure 3, see the top right corner):
(1) operation code, (2) vector length, and (3) number of repetitions.
The ‘number of repetitions’ field allows to automatically restart the
same operation multiple times to create a ‘batch’ of operations.

- Vector Instruction Word a
*' ODFU

‘ opcode H vector length H repetitions ‘

repetitions

opcode
veclen
msel
addr
step
flags
lo_bound

[ch1][ch2][ch3 | ‘ ‘

2 10 1

=}
w

| Mmm

©

| ; |
- S i 2
r="A ["Cho

8x OAG+XBAR

primitives.

latency: kpiny

Minge(a,b)

Static data-flow graph model.

\\ A full reduction

Various control loops.

*-- -- OAG+XBAR
Data Flow Unit
(customizable)
> p
g i
2| BankA T 2 Cho
g § Ch1
; Bank B (3 W‘
o £
E Bank C ™ E | Ch3 |
[os] ()
i Q
£ | BankD T §
> Q.
= ® I 2
s=(A*B)*C,[ChO
L
‘ \\ A linear maE
Fig. 3.

A functional model of the Vector Processing Unit (VPU). Data stored in the local memory banks (A-D) is multiplexed in the crossbar and accessed

using the address generators (AG). It is processed in a Data Flow Unit (DFU) that is customized for the application; in the figure one possible internal

functional organization of the DFU is shown.

Obviously, this trick lowers the total number of distinct vector
instructions that must be issued by the sCPU. More importantly,
address generators are not rewound in between the operation restarts.
Thus by properly setting the AG op-code fields it is possible, for
example, to compute one result row in a matrix multiplication using
a single DFU instruction.

The Data Flow Unit is the primary target of the application-specific
customization effort. First, a set of (vector) operations required by an
application algorithm is identified. Based on it an architecture model
is constructed, and the application is vectorized.

All application-specific vector instructions are defined by a com-
bination of a control loop and an embedded static data-flow graph.
Three types of control loops are recognized: (a) element-wise func-
tion mapping (e.g. vector addition), (b) full reductions (e.g. vector
summation), and (c) prefix reductions (e.g. cumulative summation).

Static acyclic data-flow graphs are used to represent a single
compute iteration of a customized operation. Graph nodes are im-
plemented in hardware by pipelined compute units to achieve good
performance (such as a floating-point adder or multiplier). (For
example, depending on the technology, the latency k of the FP-
ADDER is between 3 and 6 cycles.)

State machines implementing control loops in a given architecture
configuration are adapted to the pipeline latency of the underlying
hypothetical compute graphs. This is possible as the pipeline latency
k of each data-flow (sub-)graph is known a priori. Pipelining of the
element-wise loops is trivial; after the first k& cycles one result is
obtained in each cycle.

Full reduction ¥, of vector A; using operator o can be defined
as:

—1

T:A()OAlO...OAn71:7‘LI/oA7;
0

1=

€y

(E.g. summation is: W = 375 r = S0 A)).

The operator denoted o represents the embedded data-flow function
with latency ko, and it has to be associative and commutative so that
the reduction can be pipelined. Moreover there has to exist a neutral
element €, (e.g. ex = 0). Then we can write (for the case ko = 2):

(@3]
3

r=c,o0AgoAio...0A,_1 =
=(ec0ApgoAso..)o(ec0A10Az0...)

The last form leads to a hardware sub-circuit model labelled ‘full
reduction’ in Figure 3 in the DFU block. The reduction computation
in the circuit goes through three phases: (1) In the first ko cycles the
operator output c is invalid, thus the input b must be supplied with
the value ¢,. (2) In the next n — ko cycles the rest of the vector A;
is consumed, and partial results on c are routed to the input b. (3) In
the windup phase which lasts w cycles the partial results circling in
the pipeline are gradually reduced down to the final value 7.

In the windup phase it takes ko cycles (one round) to halve the
number of values circling in the pipeline, thus log2ko, rounds are
required: w = (14 log2ko)ko — 1. Therefore, the pipelined (parallel)
implementation of the full reduction is much faster than the sequential
one:

“
(&)

The execution times ¢ are given in clock-cycles here. In the
pipelined algorithm the windup latency is w cycles, but there is
only ko, values in the execution pipeline at the beginning. Hence,
the operator o is used only in &k, — 1 cycles, and empty cycles are
inserted into the pipelined unit otherwise.

Prefix reduction =, of a vector A; into vector Cj is defined:

tseqwo (1)

=kon
tpar,w, () =1

+w=n+(1+logako)ko — 1

n—1
hence: C = =, A;
i=0

n—1 7
A\ Cj = \IfoAi,
i=0

7=0

(6)

Prefix reductions are much more difficult to implement in a
pipelined manner. The pipelined algorithm requires logzn passes over
the array, and in each pass 4 roughly (n—2") operations are performed
that can be pipelined. Thus:

@)

tseq,=o (1) = ko -0
(n—2")=n-logan —n+1 @®)
i=0

The parallel algorithm is faster for some combinations of ko, and n,
but it is asymptotically slower (in n) than the sequential algorithm
(O(n) < O(n - logan)) when only one instance of the reduction
operator o is available. Thus, when the prefix reduction algorithm is
needed, we use the sequential implementation.

TABLE I
SAMPLE OF OPERATIONS IMPLEMENTED IN THE DFU. TYPE:
M=ELEMENT-WISE FUNCTION MAP, FR=FULL REDUCTION

[Operation | Type | Definition
VCOPY M Ai — Bi
VMUL M Ai — B; - Ci
VMAC M A; < B;-C; + D;
VSUM FR | Ag <+ U (B;)
DPROD M+FR | Ag « U (B;-Cy)
VMIN FR Ao < \I/Min(Bi)
INDEXMIN FR Ag Arg{\lll\/linBi}
VCMPLT M A; < (Bi < C;) ? True : False
VSELECT M Ai < (Bz # O) ? Cl : Di
VCONVR M A; « int2float((B; >> 16)& 0xFF)

D. Practical Example

In the Image Segmentation (IMGSEG) application there is an
operation that locates the minimal (maximal) value in a given vector
of floating-point numbers. The operation either returns the value
(then it is VMIN, VMAX), or the integer index where the value is
located (INDEXMIN, INDEXMAX). The integer index can be used
in subsequent operations for indexed accesses in address generators.

These operations can be efficiently implemented as full reductions.
First we define a scalar function Min(a,b) that simply returns
the lesser of the two arguments. The function is commutative
(Min(a,b) = Min(b,a)) and associative (Min(a,Min(b,c)) =
Min(Min(a, b), ¢)). The neutral element is enin = +00 because
Min(a, +00) = a. Thus we can place VMIN = Wys;,. The logical
composition is shown in Figure 3.

Another example of application-specific vector instructions are the
VCONVR/VCONVG/VCONVB instructions. The instructions take a
32-bit pixel, extract a given 8-bit color (R, G, or B) from it, and
convert the colour to a floating-point value. Using a conventional
RISC vector ISA (e.g. VIRAM) each operation would be imple-
mented using a sequence of at least 3 instructions (bit mask, shift,
float conversion).

Table I lists some other vector instructions we have implemented
for the IMGSEG application. The DPROD operation is the dot-
product that is very useful for implementing matrix multiplications.
The VCMPLT (compare-less-than) operation compares two vectors
element-wise and returns a vector of boolean values. The VSELECT
operation is a vectorized conditional ternary operator as known in the
C language.

Given a set of operations and their high-level specifications as
in the table, the hardware implementation of the customized DFU
can be generated. Currently this is done mostly manually in VHDL,
however, it should be possible to synthesize the DFU automatically
in a tool. This is left as a future work.

E. Programming Paradigm

There are two distinct instruction sets in the architecture. The
control sCPU executes a classical scalar ISA, and it is programmed
in the C language. Currently the architecture uses the 8-bit PicoBlaze
processor as the sCPU, and we have developed an optimizing C
compiler in the LLVM framework for the PicoBlaze target [11]. The
VPU executes vector instructions (denoted « in the figures); they are
prepared by sCPU in a so-called ‘instruction forming buffer’. The
forming buffer is an sCPU 1/O periphery, and typically several sCPU
instructions are required to setup the next vector instruction for VPU
in the buffer. Ideally the preparatory steps are finished before the

[M2 [M3]

“MZ[M3]l

A3 || 100 A3 [100 [™M3] Mad |
Ad 150 | [A4 150 | A2 || 50
A3 <125
A5 166 | [AS = 12
A6 A6 200
(a) Virtex 5 (b) Virtex 6 (c) Spartan 6
TABLE II

THE MAXIMAL FREQUENCY IN MHZ DEPENDS ON THE PIPELINE DEPTH.
Ax = FP-ADDER LATENCY, Mz = FP-MULTIPLIER LATENCY.

previous vector instruction has completed so that the sCPU and VPU
execution is fully overlapped.

IV. EVALUATIONS
A. Technology Scaling

The ASVP architecture was ported to several generations of
Xilinx FPGA technology: Virtex5 (XC5VLX110T-1), Virtex 6
(XC6VLX240T-1), and Spartan 6 (XC6SLX45T-3). The ASVP core
is divided in two clock domains: (1) The sCPU and the configuration
interfaces are clocked at the base frequency fo. (2) The Vector
Processing Unit is clocked at fyv py. Generally fo < fvpu. As the
sCPU is part of a wider ecosystem with which it has to communicate
(the =y, ¢ links in Figure 2), and also because the PicoBlaze processor
that implements the sCPU operates in lower frequency ranges, it
is clocked at the system base frequency fo. Contrary, the VPU is
coupled only through the command/status link « that carries the
vector instruction word to the VPU.

The base frequency fy is determined by external factors, such as
the System-on-Chip platform and the Host CPU (e.g. MicroBlaze).
For simplicity we assume here fo(Spartan6) = 50MHz and
fo(Virtex5 4+ 6) = 100MHz.

The maximal fypy is determined by the level of pipelining in
data paths and the routing requirements. The separation of the DFU
and AG units by FIFO queues allows to pipeline the two VPU
parts independently. For example in the high-speed mode additional
registers are inserted between the crossbar switch and the memory
banks to improve BlockRAM output delays. Ideally, increasing the
pipeline latency (ko) of a compute unit (such as FP-ADDER) by
factor S should also increase the maximal operational frequency by
the same factor.

B. FPGA Synthesis Experimental Results

To determine the technology scaling characteristics the ASVP core
was instantiated in FPGA in a given configuration, and the maximal
target operating clock frequency fv py was iteratively lowered until
the FPGA synthesis process (including place, route, and timing
analysis) finally succeeded. Table II summarizes the results for Virtex
5, 6 and Spartan 6 technologies. The ASVP configuration is expressed
in AzMy notation: Ax specifies that the FP-Adder has latency
z, and similarly My refers to the FP-Multiplier latency y. The
maximal operating frequencies of the VPU are 166MHz, 200MHz,
and 125MHz, for V5, V6, and S6 technologies, respectively.

Information about area breakdown in flip-flops (FF), combinatorial
resources (LUTSs), and slices is given in Figure 4 for the Virtex 6
technology; in the other technologies (V5, S6) the results are similar.
The single-clock domain (low-speed) and dual-clock domain (high-
speed) configurations are compared in the figure.

The control processor itself (sCPU, PicoBlaze 3) consumes very
few resources. However, its peripheral circuitry (I/O decoders and

3500 —

G: 354 O G: DFU FP Arith
G: 354 O F:DFU Muxes&Ctrl
4 O E: Crossbar
3000 F:774 O D: Addr. Gens.
G: 206 F: 746 ’ @ C: Clk Crossing
’ B B: sCPU Peripheral
2500 F: 401 B A:sCPU (PB3)
= E: 535
3 2000 | E: 364 E:570
(0]
1<
3 1500 5200 G: 181
[0 = . .
o F: 401 D: 846 D: 876 D: 1036 G: 188 | F: 281
[E96] F: 258 .
1000 — E:298
D:472| | G: 403 E: 286
D: 477
500 — D: 351
I. I 1117
0~ T T T T T 1
Single-Clock Dual-Clock Single-Clock Dual-Clock Single-Clock Dual-Clock
(Low-speed) (High-speed) (Low-speed) (High-speed) (Low-speed) (High-speed)
Registers (Flip—flops) Combinatorial (LUTs) Slices (FF&LUTS)
Fig. 4. Breakdown of the area (FF, LUTs and Slices) consumed by the

ASVP core in Virtex 6 technology in the single-clock/low-speed and dual-
clock/high-speed configurations.

multiplexers) consumes about 5x more space than the sCPU. The
registers for clock domain crossing between fo and fyv py constitute
about 15% of flip-flops in the dual-clock configuration. The relatively
high count is caused by registering the whole vector instruction word
a between the sCPU and VPU. The dual-clock configuration is also
optimized for a higher frequency, thus additional registers are used in
the VPU for deeper pipelining. The crossbar is about 3.8x larger in
flip-flops because registers are instantiated on all its inputs. Address
generators consume about 1.8x more registers because several more
FIFOs are instantiated, and the existing ones are deeper.

All in all, the dual-clock high-speed configuration requires 1.6x
more registers, but a roughly equal number of LUTs. In the Virtex
6 technology one slice represents 4 six-input LUTs and 8 storage
elements. Thus, after packing the design into slices, the dual-clock
high-speed configuration requires roughly 1.2x more slices.

C. Applications Benchmarks

Given the technology performance characteristics determined by
the FPGA implementation in Table II, we simulated the cycle-
accurate synthesizable VHDL model of the ASVP core in the Mod-
elSim simulator to measure the execution time and dynamic profile
of several benchmark kernels. All the benchmark programs compute
in the floating-point single precision format. Bar plots in Figures 5,
6, and 7 give the total execution time in microseconds for different
technology nodes (latency and frequency) and kernel parameters (e.g.
matrix size). The total execution time is split into four parts in the
bars: D: execution on sCPU that was not overlapped with computation
in DFU; C: DFU has full pipeline (useful computation); B: DFU
pipeline bubble due to the reduction windup; A: DFU stall (input
data not available).

The bar plots are overlaid with line plots that show the ideal clock
frequency scaling for reference: The first column in each group is
taken as the baseline, and the subsequent data points are simply scaled
by the frequency difference. This ideal scaling is highly optimistic
because it assumes that the operating frequency in the whole core
is increased, while in fact due to the implementation constraints we
keep the sCPU clock frequency fo constant and change only fv pr.

In the more complex benchmarks (MANDEL, IMGSEG) the
minimal kernel execution time caused by the fixed execution speed

O sCPU T
O DFU Pipe Full
M DFU Reductions 82x33
800 7| & DFU Stall
Virtex 5/6 Spartan 6

2 600

Q

£ 24x24

i=4

S

3 400

@

[H 20x20

24x24 NH
200 20x20 16x16
16x16 12x12
12x12
. S DR T il

FTTTTT T TT T T T T T T T T rTT T T TIrrrrrrIil
S=233 23222 =2232=2 22322 == == =22 2= =22
2232 2232 3232 32233 2% 3% 2% 23 23
2PPR 2228 2228 2P2R &r &% &~ &= 6=
8000 0600 0600 8B 3® 3& 2& 29 J@
2838 2938 938 Soge 29 2% 29 29 2F
2332 23222 2222 2222 A= §= q= qU= «=
EACEC) M<TW0O EACEC) R ATEC) << << < < <
<< << << << LT << < < < < <

Fig. 5. Matrix Multiplication (MATMUL) execution time in microseconds

for different matrix sizes, technology (left: Virtex 5/6, right: Spartan 6), and
the corresponding frequency/latency ratios.

(fo) of the sCPU is presented. The time is measured in simulation by
setting fy pu to a very high value (10000MHz), hence fully exposing
the sCPU latency.

Matrix Multiplication (MATMUL): The MATMUL program com-
putes a dense matrix multiplication C' = A x B. For brevity
we present only results measured for square matrices n x n. The
computation requires n” dot-products that are grouped in n batches.
Each batch computes one row (or one column) of the result matrix.
Matrix multiplication shows a relatively high reduction cycle count
overhead (Figure 5). In the fastest Virtex 6 node A6M3@200M when
multiplying 32x32 matrices the reduction cycles contribute to about
35% of the total execution time.

Mandelbrot Set (MANDEL): The MANDEL program computes
the Mandelbrot set for a given set of points (a tile). The output of
the kernel is an array of the number of iterations executed for each
point until the point is known not to be in the set. The tile size is 200
points, and the maximal number of iterations before a forced escape
is 50. The kernel speculatively executes all 50 iterations for each
point, hence its execution time is independent of the actual part of
the set being computed. The body of the iterative loop consists of 18
vector instructions. The kernel (Figure 6) does not contain reduction
operations, and given it processes relatively long vectors (tile size
200 elements), it scales quite well because even for higher fv py the
sCPU has enough time to prepare another vector instruction in the
forming buffer.

Image Segmentation (IMGSEG): The IMGSEG program imple-
ments image foreground/background pixel motion detection (seg-
mentation) using the algorithm presented in [12] without shadow
detection and with several modifications. The decision that a pixel
from the current frame represents foreground or background depends
on statistical models and their mixture. Each pixel is modelled by
a mixture of K strongest Gaussian models of background (K=4 in
our implementation); Gaussian models (mean values and variance)
represent a state (colour) of the pixel. Each model also contains
the weight parameter that specifies how often a particular model
successfully described the background in the pixel. The algorithm was
vectorized, and the vector length was 50 pixels. Conditional branches
were vectorized by speculatively computing both possibilities and

O D:sCPU B\
4000 4 O C:DFU Pipe Full
@ B: DFU Reductions
| A:DFU Stall
3000
12}
=
© C
£ ’
= Virtex 5/6 artan 6
'5 2000 D
3 b
2
w
c ~8_
1000 | @ Limit ¢
© c (sCPU@100M)
Mamw 2
0- T T T T T T 1
= = = = 3 = =
S g :
® ® ® ® S 8 ®
4 3 3 8 & 2 g
= = = = I 3 =
2 2 2 K H < 3
2

Fig. 6. Mandelbrot Set (MANDEL) execution time in microseconds for
different technologies (V5/6, S6) and the corresponding frequency/latency
ratios. The middle column (labelled ‘Limit’) shows the speedup limit imposed
by the sCPU.

O D:sCPU
140 -| @ C: DFU Pipe Full B
@ B: DFU Reductions Spartan 6
E A:DFU Stall
120
7 100 |
© Virtex 5/6 D
E g4
5 A\
5 - C
2 60 4 Limit
= il D D (sCPU@100M)
—
40 c @
© c c 3
20 |
B
B B B B B
0- T T T T T T 1
= = = = = = =
8 3 8 8 8 2 {
5 o © S g g d
g & & g : g ¢
® z b
3 3 3 H g g 3
< < < < 2 <
2
Fig. 7. Image Segmentation (IMGSEG) execution time in microseconds

for different technologies (V5/6, S6) and the corresponding frequency/latency
ratios. The middle column (labelled ‘Limit’) shows the speedup limit imposed
by the sCPU.

then VSELECTing the correct value per each element.

Execution time of the IMGSEG kernel (Figure 7) is largely
determined by the sCPU speed (the VPU is idle 52% of time in
Spartan 6 A4M4@125M technology). To load a single 16-bit value
into the vector-instruction forming buffer (e.g. AG initial addresses
are usually changed between two succeeding operations), PicoBlaze
sCPU has to execute 4 instructions (2xLOAD, 2xOUTPUT). We plan
to amend this by introducing a new configuration table to store the
bank memory locations of vector variables. A row from the table
could be loaded into the proper fields in the vector instruction forming
buffer by a single sSCPU I/O write. Our preliminary internal results
suggest that this technique can reduce the above mentioned sCPU
overhead from 52% to 9% (11x in absolute time), improving the
total execution time 1.8x.

V. CONCLUSION

We presented a new approach to the design of application-specific
processors and evaluated it by implementing three algorithms: ma-
trix multiplication, Mandelbrot set, and Image Segmentation. The
maximal operating frequency of the sample core in an FPGA is
166 MHz, 200 MHz, and 125 MHz in Virtex 5, Virtex 6 and Spartan 6.
When the frequency is downscaled by external factors, the latency
of the internal pipelined floating-point units may be decreased, thus
lowering overheads in full-reduction operations. The overhead could
be lowered further if the DFU interleaved windup execution in
one operation with computation in the following one (within an
operation batch). The technique is similar to loop unrolling in scalar
architectures.

Resource consumption of the proposed architecture is affordable
(~1500 FPGA slices), although there is a room for improvements.
Currently, 4 address generators (AG) are instantiated to support
indexed addressing modes. Our experience shows, however, that one
indexing AG, shared by the existing 4 main AG, would suffice for
most applications.

The performance of the embedded simple control processor (sCPU)
was found to be the critical factor for the Image Segmentation kernel
(52% overhead). However, we are confident this can be overcome by
preloading parts of vector instructions from a dedicated table.

ACKNOWLEDGEMENT

This work has been supported from project SMECY, project
number Artemis JU 100230 and MSMT 7H10001.

REFERENCES

[1] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing modular hardware
accelerators in C with ROCCC 2.0,” in Proceedings of the 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
ser. FCCM ’10. IEEE Computer Society, 2010, pp. 127-134.

[2] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Synthesis of

Platform Architectures from OpenCL Programs,” May 2011, pp. 186-193.

A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-M. Hwu,

“FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs,” in

Application Specific Processors, 2009. SASP ’09. IEEE 7th Symposium on, july

2009, pp. 35 —42.

M. Danek, J. Kadlec, R. Bartosinski, and L. Kohout, “Increasing the level of ab-

straction in FPGA-based designs,” in Field Programmable Logic and Applications,

2008. FPL 2008. International Conference on, 2008, pp. 5 —10.

A. Papakonstantinou, Y. Liang, J. A. Stratton, K. Gururaj, D. Chen, W.-M. W.

Hwu, and J. Cong, “Multilevel Granularity Parallelism Synthesis on FPGAs,” in

Proceedings of the 2011 IEEE 19th Annual International Symposium on Field-

Programmable Custom Computing Machines, ser. FCCM ’11. 1IEEE Computer

Society, 2011, pp. 178-185.

C. Kozyrakis and D. Patterson, “Vector vs. superscalar and VLIW architectures for

embedded multimedia benchmarks,” in Proceedings of the 35th annual ACM/IEEE

international symposium on Microarchitecture, ser. MICRO 35. Los Alamitos,

CA, USA: IEEE Computer Society Press, 2002, pp. 283-293.

[7]1 P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: portable, scalable, and
flexible FPGA-based vector processors,” in Proceedings of the 2008 international
conference on Compilers, architectures and synthesis for embedded systems, ser.
CASES ’08. New York, NY, USA: ACM, 2008, pp. 61-70.

[8] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux, “Vector

Processing as a Soft Processor Accelerator,” ACM Trans. Reconfigurable Technol.

Syst., vol. 2, pp. 12:1-12:34, June 2009.

S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lépez-Lagunas, P. R. Mattson,

and J. D. Owens, “A bandwidth-efficient architecture for media processing,” in

Proceedings of the 31st annual ACM/IEEE international symposium on Microar-

chitecture, ser. MICRO 31. Los Alamitos, CA, USA: IEEE Computer Society

Press, 1998, pp. 3-13.

[10] H. P. Hofstee, “Heterogeneous Multi-core Processors: The Cell Broadband Engine,”
in Multicore Processors and Systems, ser. Integrated Circuits and Systems, S. W.
Keckler, K. Olukotun, and H. P. Hofstee, Eds. Springer US, 2009, pp. 271-295.

[11] J. Sykora, “Optimizing C Compiler and an ELF-Based Toolchain for the PicoBlaze
Processor,” 2012. [Online]. Available: http://sp.utia.cz/index.php?ids=pblaze-cc

[12] P. Kaewtrakulpong and R. Bowden, “An Improved Adaptive Background Mixture
Model for Realtime Tracking with Shadow Detection,” 2001.

3

[4

[5

[6

9

