

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note

http://sp.utia.cz

Arrowhead Client on ZynqBerry
with SDSoC 2018.2 HW Accelerators

Installation for Win7 and Win10

Jiri Kadlec, Lukáš Kohout
kadlec@utia.cas.cz kohoutl@utia.cas.c

Revision history

Rev. Date Author Description

0 1.04.2019 J. Kadlec Installation for Win7 and Win10

1

2

mailto:kadlec@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Contents

1 Introduction .. 1
2 HW configuration with simple Arrowhead Client example .. 1
3 Installation of Arrowhead Framework Services on RPi3 ... 2
4 Create SDSoC platform for Arrowhead compatible ZynqBerry boards 3
5 Create SDSoC 2018.2 platform ... 5
6 Compile HW accelerator to new BOOT.bin by the SDSoC 2018.2 compiler 6
7 Install Arrowhead-f support on ZynqBerry boards ...10
8 Install Arrowhead-f C++ Provider on ZynqBerry ..10
9 Install Arrowhead-f C++ Consumer on ZynqBerry ...11
10 Modification of Arrowhead Database ..14
11 Test the ZynqBerry Consumer and Producer ..15
12 Producer with real temperature measurement on ZynqBerry ..16
13 Configuration of PetaLinux and Debian (optional) ...19
14 Configuration and compilation of Debian for ARM (optional) ...21
15 Package content ...24
References ..24
Disclaimer ...25

Acknowledgement

This work has been partially supported from project Productive4.0, project number ECSEL
737459.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

1/25

1 Introduction
This application note describes an installation procedure of Arrowhead client on Zynq 7000
device with support for the Xilinx SDSoC 2018.2 HW accelerators. The concrete board is
ZynqBerry TE0726-03M. It works with Xilinx XC77010-1C device with the dual core Arm A9
32 bit and programmable logic on single 28 nm chip. The ZynqBerry PCB has RaspberryPi 2
form factor. The ZynqBerry board is designed and manufactured by company Trenz
Electronic [1]. The device runs Xilinx PetaLinux 2018.2 kernel with Debian 9.8 Stretch
distribution (03.25.2019). The client SW acts as a Producer of a service or as a Consumer
requesting the service from an Arrowhead framework. The base hardware platform for the
Zynq device is compiled with Xilinx Vivado 2018.2 tool. The entire installation procedure has
been tested on Win 7 Pro and Win 10 PC. The optional configuration of the Petalinux 2018.2
kerrnel and the optional generation of the Debian image are performed on the Ubuntu 16.04
LTS host. The Ubuntu OS can be executed on the same 64 bit Win7 or Win 10 PC in the
VMware Workstation 14 Player. To run and test Arrowhead clients, it is required to have
running Arrowhead-framework G4.0 light-weight installation running on a RaspberryPi 3B
board (RPi3).

2 HW configuration with simple Arrowhead Client example
The targeted HW works with one RPi3 board (bottom) and two ZynqBerry boards (above).
The RPi3 implements the Arrowhead framework. See [2] for the documentation. The
Producer ZynqBerry on the top board hosts C++ provider capable to measure the actual
temperature of the Xilinx XC77010-1C device. The Consumer ZynqBerry in the middle hosts
C++ consumer capable to ask the Arrowhead framework about the temperature provided as
service by the Producer ZynqBerry board. Zynq boards host HW accelerators of Matrix
MultiplyAdd (20x20 int32 matrices), delivering approximately 4x shorter execution time in
comparison to the optimized SW running on the 650 MHz Arm Cortex A9 processor.

Figure presents: RPi3 (bottom), and two ZynqBerry boards with the Arrowhead framework
G4.0 compatible C++ clients running on ZynqBerry boards

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

2/25

3 Installation of Arrowhead Framework Services on RPi3
Testing and running of the Arrowhead C++ clients on ZynqBerry boards requires Ethernet
access to the Arrowhead framework services. It is recommended to use the precompiled
image for the RPi3 board. It includes already installed and configured Arrowhead framework
G4.0 lightweight implementation. The image is available as one of results of the work
package WP1 of the running ECSEL JU project Productive4.0 https://productive40.eu/.

It is accessible for all consortium project partners from the project ownCloud repository
https://productive4-cloud.automotive.oth-aw.de/index.php/login . Files are present in section
WP1, task 1.4. Please contact coordinator of the consortium for further information about the
access to the Arrowhead-framework G4.0 light-weight installation running on the RPi3 board.
After receiving the access to the download, unzip the three downloaded files Arrowhead-40-
raspi.z01, Arrowhead-40-raspi.z02 and Arrowhead-40-raspi.zip into the final image file
image_180626.img (size 3.711.959.040 Bytes).

Copy the RPi3 image image_180626.img to (at least) 4GB SD card (speed grade 10). You
can use the Win32DiskImager utility from: https://sourceforge.net/projects/win32diskimager/ .

Connect the RPi3 to USB keyboard, HDMI monitor with inserted SD card. Connect it to
Ethernet with the DHCP server. Power ON the board by connecting the 5V power supply via
micro USB cable. Power can be provided from the PC via the USB port or, preferably, from
the dedicated 5V power supply.

The RaspberryPi 3 will boot from the SD card image with text output to the HDMI monitor.

https://productive40.eu/
https://productive4-cloud.automotive.oth-aw.de/index.php/login
https://sourceforge.net/projects/win32diskimager/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

3/25

Login as user:

pi

Password:

raspberry

Find and write down the assigned Ethernet IP address for IP V4 and IP V6 by typing on the
RPi3 keyboard:

ifconfig

To shutdown properly the RPi3 type on the RPi3 keyboard:

sudo halt

The OS will shutdown and all possibly open R/W operations to the SD card are closed.
Remove temporarily the SD card and disconnect the 5V power to switch OFF the board.
Return the SD card to RPi3 slot.

4 Create SDSoC platform for Arrowhead compatible ZynqBerry
boards

The Xilinx SDSoC 2018.2 compiler requires preparation of SDSoC platform. It is specific
Vivado 2018.2 design with metadata, enabling to the SDSoC LLVM system level compiler to
add additional HW accelerator blocks and data movers on top of the initial Vivado design.
These HW blocs are defined as C/C++ user defined functions. These functions can be
compiled, debugged and executed in Petalinux user space on ARM A9. But in addition, the
selected C/C++ functions can be compiled also to form of Vivado HLS HW accelerators,
compiled by the Vivado HLS compiler and automatically interfaced with dedicated data
movers like DMA or SG DMA. The resulting compiled system remains compatible with the
Debian OS and C++ Arrowhead Clients.

The initial hardware platform is compiled with Xilinx SDSoC 2018.2 tool. The design is based
on a board support package provided by Trenz Electronic for the ZynqBerry board. You have
to have the Xilinx SDSoC 2018.2 installed on your PC. Use the SDSoC 2018.2 web installer
for Windows 64 (EXE - 50.58 MB) from:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-
development-environments/2018-2.html
The SDSoC 2018.2 license voucher can be purchased together with TE0726-03M board as
bundle: "ZynqBerry 512 MByte DDR3L and SDSoC Voucher”. See [1]:
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-
SDSoC-Voucher?c=350
We will use the ZynqBerry board support package generation project included in the
evaluation package accompanying this application note. The board support package
generation project serves for generation of the HW bit-stream for the programmable part of
the design for preparation of the low level SW support for the preconfigured and precompiled
Petalinux 2018.2 kernel and for the precompiled Debian 9.8 “Stretch” image for the
ZynqBerry boards.

Image files included in this evaluation package can be used for quick first evaluation of the
development flow of the SDSoC platform.

The complete configuration/compilation of Petalinux kernel and Debian image is skipped at
this stage, but it is described in the second part of this application note (Chapters 13 and 14).

To prepare the ZynqBerry SDSoC board support package follow these steps:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/2018-2.html
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-SDSoC-Voucher?c=350
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-SDSoC-Voucher?c=350

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

4/25

1. Unpack the enclosed evaluation package TE0726_zsys_SDSoC.zip to Win 7 or
Win10 directory of your choice. We will use:

c:\TS82\TE0726_Debian_Arrowhead_Client\

It will create TE0726_zsys_SDSoC folder.

2. On Win 7 or Win10, open dos terminal window, go to the TE0726_zsys_SDSoC
folder and create an initial setup:

cd c:\TS82\TE0726_Debian_Arrowhead_Client\TE0726_zsys_SDSoC

_create_win_setup.cmd

Select option (1) to create maximum setup of CMD-Files and to exit.
Set of scripts is created in the TE0726_zsys_SDSoC folder.
To overcome limitations of Win 7 and Win10 related to the need of short directory
paths, use the script _use_virtual_drive.cmd to create a virtual short path to your
directory drive X:\TE0726_zsys_SDSoC Type:

_use_virtual_drive.cmd

Select X as name of the virtual drive and select (0) to create the virtual drive.
Go to the created virtual short-path directory by:

X:

cd TE0726_zsys_SDSoC

3. Use text editor of your choice and open and modify script design_basic_settings.sh
Select correct path to SDSoC 2018.2 tool installed on your Win7 or Win10. Line 38:

@set XILDIR=C:/Xilinx

Select proper Xilinx device. Line 48:

@set PARTNUMBER=3

The selected number corresponds to the number defined in file
X:\TE0726_zsys_SDSoC\board_files/TE0726_board_files.csv
Verify, if line 78 sets the SDSoC flow support by: ENABLE_SDSOC=1

@set ENABLE_SDSOC=1

4. Start the Xilinx Vivado 2018.2 and create the design by executing of the script:

X:\TE0726_zsys_SDSoC\vivado_create_project_guimode.sh

Next figure shows block design of the created system. It includes 4 HW reset IPs for
future HW accelerators with system clocks 50 MHz, 64 MHz, 74 MHz or 100 MHz.

The DDR3 interface and the connections to the USB ports for keyboard, mouse and
100Mbit Ethernet are all pre-configured inside of the Vivado Zynq block.

5. To build the Vivado 2018.2 design, use the TCL script provided within the board
support package. From the Vivado TCL console execute command:

TE::hw_build_design -export_prebuilt

After the compilation, new hardware description file TE0726_zsys_SDSoC.hdf is
generated in folder:

X:\TE0726_zsys_SDSoC\prebuilt\hardware\m\TE0726_zsys_SDSoC.hdf

Copy the two precompiled files from the enclosed evaluation package to:

X:\TE0726_zsys_SDSoC\prebuilt\os\petalinux\default\image.ub

X:\TE0726_zsys_SDSoC\prebuilt\os\petalinux\default\u-boot.elf

We skip the optional Petalinux and Debian configuration and compilation steps at this stage.

Steps will be described in Chapters 13 and 14.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

5/25

Figure describes the initial Vivado design. It defines the SDSoC 2018.2 platform.

5 Create SDSoC 2018.2 platform
1. In the open Vivado 2018.2 console, create and compile the initial BOOT.bin file and

the initial SW modules by execution of the command:

TE::sw_run_hsi

The resulting BOOT.bin file will be located in the folder

X:\TE0726_zsys_SDSoC\prebuilt\boot_images\m\u-boot\BOOT.bin

2. To prepare for the SDSoC 2018.2 platform generation, move the created support file

X:\TE0726_zsys_SDSoC\prebuilt\software\m\zynq_fsbl_flash.elf

to

X:\zynq_fsbl_flash.elf

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

6/25

3. In Vivado 2018.2 console, create the SDSoC platform by execution of the command:

TE::ADV::beta_util_sdsoc_project

The SDSoC 2018.2 platform will be generated in the directory

X:\SDSoC_PFM\te0726\03m\

and it is also packed into the ZIP file like:

X:\SDSoC_PFM\te0726\SDSoC_PFM_te0726-03m_20190330103933.zip

6 Compile HW accelerator to new BOOT.bin by the SDSoC 2018.2
compiler

4. Open SDSoC project in directory

X:\SDSoC_PFM\te0726\03m\

5. In SDSoC select platform:

X:\SDSoC_PFM\te0726\03m\TE0726_zsys_SDSoC

6. Create new project named

te06_l

7. Select template project

X:\SDSoC_PFM\te0726\03m\TE0726_zsys_SDSoC\samples\direct_connect

and compile it for the Release target with all clocks set to 100 MHz.

8. The SDSoC compiler will create these relevant results in the sd_card directory

X:\SDSoC_PFM\te0726\03m\te06_l\Release\sd_card\BOOT.BIN

X:\SDSoC_PFM\te0726\03m\te06_l\Release\sd_card\te06_l.elf

9. To prepare for the programming of generated BOOT.BIN to the Qspi flash on the
ZynqBerry board move back the temporarily moved file from the directory

X:\zynq_fsbl_flash.elf

back to the folder

X:\TE0726_zsys_SDSoC\prebuilt\software\m\zynq_fsbl_flash.elf

It will be needed fo programming of the Qspi FLASH of the ZynqBerry board.

10. Copy the created BOOT.BIN file it to a newly created NA directory (New Application):

X:\TE0726_zsys_SDSoC\prebuilt\boot_images\m\NA\BOOT.bin

11. Connect the ZynqBerry board to the Ethernet.

12. From the open Win 7 or Win 10 console execute command:

design_clear_design_folders.cmd

This script cleans all created Vivado 2018.2 design subfolders.

13. Unzip the preconfigured and precompiled Debian image for the ZynqBerry board from
from this evaluation package file: te0726-debian.zip (598.913.412 Bytes) to the file
te0726-debian.img (7.516.192.768 Bytes).

14. Use again the Win32DiskImager tool for creation of the image te0726-debian.img on
the SD card. Use 8GB SD with speed grade 10.

15. Copy to the root of the SD card the HW accelerated matrix multiplication demo
executable te06_l.elf from the directory:

X:\SDSoC_PFM\te0726\03m\te06_l\Release\sd_card\te06_l.elf

16. Insert created SD card to the ZynqBerry board.

17. Connect the ZynqBerry board with your Win7 or Win 10 PC via micro USB cable. The
USB cable provides the 5V power supply, the programming interface and console
terminal. Use putty or similar terminal client with speed (baud) 115200bps, data bits

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

7/25

8, stop bits 1, parity none and flow control none. The actual COM port number
associated with your connection can be found in the windows Device manager.

18. You have to write the X:\TE0726_zsys_SDSoC\prebuilt\boot_images\m\NA\BOOT.bin

file to the ZynqBerry on-board Qspi FLASH. It is needed for the initial stage of the
booting procedure of the Xilinx xc7z010 device present on the ZynqBerry board.
From the open Win 7 or Win 10 console execute this command:

program_flash_binfile.cmd

19. The programming of the Qspi will start. It will be followed by automatic reset of the
Zynq board.

20. You can install and use putty terminal https://www.putty.org/

21. The ZynqBerry board will automatically boot from the newly programmed on board
Qspi flash. The first stage boot loader (fsbl) program is executed first. It loads to
DDR3 and starts the u-boot program. The u-boot program will download the
bitstream, configures the Arm Cortex A9 processing system and boots the
preconfigured and precompiled Petalinux image.ub image (size 3.926.136 bytes)
from the SD card with the asci output to the serial terminal. The preconfigured Debian
file system is present on the separate partition of the SDcard.

22. Login as user:

root

Password:

root

23. Find and write down the assigned Ethernet IP address for IP V4 and IP V6 by typing
command:

ifconfig

The HW accelerated matrix multiplication demo can be executed on both Zynqberry
boards from the automatically mounted SD by executing:

/boot/te06_l.elf

See the HW acceleration measured by the number of Arm A9 clock cycles.

24. To shutdown properly the ZynqBerry board type:

halt

The Debian OS is properly shut down and all possibly open R/W to the SD card are
closed. Remove temporarily the SD card and disconnect the 5V power to switch OFF
the board. Return back the SD card.

The SDSoC compiler have created and compiled new HW accelerator to the programmable
logic part of the device from the C++ source code mmult.cpp. See the listing of mmult.cpp:

#include "mmult.h"

// Computes matrix addition

// Out = (out + in3) , where a direct connection establishes between the

// HLS kernels for the access of "out"(A X B)

void madd_accel(

 const int *mmult_in, // Read-Only Matrix

 const int *in3, // Read-Only Matrix 3

 int *out, // Output matrix

 int dim // Size of one dimension of the matrices

)

{

https://www.putty.org/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

8/25

 // Performs matrix addition over output of (A x B) and In3 and

 // writes the result to output

 write_out: for(int j = 0; j < dim * dim; j++) {

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=1 max=400

 out[j] = mmult_in[j] + in3[j];

 }

}

// Computes matrix multiplication

// out = (A x B) , where A, B are square matrices of dimension (dim x dim)

void mmult_accel(

 const int *in1, // Read-Only Matrix 1

 const int *in2, // Read-Only Matrix 2

 int *out, // Output Result

 int dim // Size of one dimension of the matrices

)

{

 // Local memory to store input and output matrices

 // Local memory is implemented as BRAM memory blocks

 int A[MAX_SIZE][MAX_SIZE];

 int B[MAX_SIZE][MAX_SIZE];

 #pragma HLS ARRAY_PARTITION variable=A dim=2 complete

 #pragma HLS ARRAY_PARTITION variable=B dim=1 complete

 // Burst reads on input matrices from DDR memory

 // Burst read for matrix A, B and C

 read_data: for(int itr = 0 , i = 0 , j =0; itr < dim * dim; itr++, j++){

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=324 max=400

 if(j == dim) { j = 0 ; i++; }

 A[i][j] = in1[itr];

 B[i][j] = in2[itr];

 }

 // Performs matrix multiply over matrices A and B and stores the result

 // in "out". All the matrices are square matrices of the form (size x size)

 // Typical Matrix multiplication Algorithm is as below

 mmult1: for (int i = 0; i < dim ; i++) {

 #pragma HLS LOOP_TRIPCOUNT min=1 max=20

 mmult2: for (int j = 0; j < dim ; j++) {

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=1 max=20

 int result = 0;

 mmult3: for (int k = 0; k < DATA_SIZE; k++) {

 #pragma HLS LOOP_TRIPCOUNT min=1 max=20

 result += A[i][k] * B[k][j];

 }

 out[i * dim + j] = result;

 }

 }

}

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

9/25

Figure describes the new SDSoC 2018.2 generated Vivado project with HW accelerator.

The generated HW design is interfaced to the modified user C++ source code. SW is
compiled into te06_l.elf file to run as process in user space of the Debian OS with the
Petalinux 2018.2 kernel on the ZynqBerry board. The design includes the two Vivado HLS
HW accelerators for matrix (20x20 int32) multiplication and for matrix (20x20 int32) addition.
Both accelerators operate at 100 MHz system clock. Both accelerators are directly
connected in HW and complemented with automatically instantiated DMA data-movers.

The corresponding bitstream has been compiled to the BOOT.BIN file and the modified SW
for the application te06_l.elf file. The generated HW respects the initial board support
package constrains and fits to the ZynqBerry board.

Repeat steps 1-24 also for the second ZynqBerry board.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

10/25

7 Install Arrowhead-f support on ZynqBerry boards
At this stage, the Debian OS present on both Zynqberry boards can be upgraded to become
compatible with the Arrowhead framework G4.0 client and provider C++ demo applications.

1. Start the RPi3 board, both ZynqBerry boards and Win7 or Win 10 PC.

2. Identify and write down the Ethernet addresses set by the HDCP server. The network
has to support access to the external Ethernet to get access to the repositories.

In Win7 or Win 10 PC use WinSCP or similar tool to copy the arrowhead installation
script install-arrohead-cli-dep.sh from this evaluation package to this folder of each of
the two ZynqBerry boards:

/root/install-arrohead-cli-dep.sh

3. To control the ZynqBerry boards, use two SSH (preferred) or serial terminals of your
Win7 or Win 10 PC. Use again: user root pswd root

4. To upgrade the Debian installations and to install the dependencies required by the
Arrowhead C++ clients, execute on each ZynqBerry board these commands:

cd /root

chmod ugo+x install-arrohead-cli-dep.sh

./install-arrohead-cli-dep.sh

8 Install Arrowhead-f C++ Provider on ZynqBerry
To control the ZynqBerry device, use SSH (preferred) or serial terminal.

1. Get the Arrowhead client source code. The sources include C++ version of the
Arrowhead Provider and Client skeletons.

cd /root

git clone https://github.com/arrowhead-f/client-cpp

2. Compile Arrowhead ProviderExample.

cd client-cpp/ProviderExample

make

3. Modify the ProviderExample configuration file ApplicationServiceInterface.ini

mcedit ApplicationServiceInterface.ini

The configuration file consists of the following items.

 sr_base_uri – an address of the Arrowhead registration service running in

insecure mode, in our case it is the RPi3 IP address with port 8440.

 sr_base_uri_https – an address of the Arrowhead registration service running

in secure mode, in our case it is the RPi3 IP address with port 8441.

 port – a port number where the Provider will be available on, set 8000.

 address – Provider IP address, ZynqBerry IP.

 Address6 - Provider IP address in IPV6

The ProviderExample configuration file example:

[Server]

sr_base_uri="http://10.42.0.141:8440/serviceregistry/"

sr_base_uri_https="https://10.42.0.141:8441/serviceregistry/"

port="8000"

address="10.42.0.103"

address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

4. Start the ProviderExample

https://github.com/arrowhead-f/client-cpp

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

11/25

./ProviderExample

The ProvidedExample registers itself in the Arrowhead framework database. On
Consumer request, it returns an artificial temperature, fixed to value 26 degrees
Celsius.

9 Install Arrowhead-f C++ Consumer on ZynqBerry
The Arrowhead ConsumerExample can be compiled and run on the second ZynqBerry
board. Alternatively, the ConsumerExample can be compiled and tested on the same
ZynqBerry board as the ProviderExample.

1. Compile Arrowhead ConsumerExample.

cd /root/client-cpp/ConsumerExample

make

2. Configure the ConsumerExample. There are two configuration files:
OrchestratorInterface.ini and consumedServices.json.

a. OrchestratorInterface.ini

mcedit OrchestratorInterface.ini

The configuration file consists of the following items.

 or_base_uri – an address of the Arrowhead orchestrator service

running in insecure mode, in our case it is the RPi3 IP address with

port 8440.

 sr_base_uri_https – an address of the Arrowhead orchestrator service

running in secure mode, in our case it is the RPi3 IP address with port

8441.

 port – a port number where the Consumer will be available on, set

8002.

 address – Consumer IP address, ZynqBerry IP.

 address6 - Consumer IP address in IPV6

The configuration file example:

[Server]

or_base_uri="http://10.42.0.141:8440/orchestrator/orchestration"

or_base_uri_https="https://10.42.0.141:8441/orchestrator/orchestration"

port="8002"

address="10.42.0.103"

address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

b. consumedServices.json

mcedit consumedServices.json

Modify the following items in the file:

 requestForm/requesterSystem/port – Number of the Consumer port.

 Modify line

"security" : ""

 preferredProviders/providerSystem/address – Preferred Provider IP

address.

 preferredProviders/providerSystem/port – Port number, where the

preferred Provider listen on.

This configuration file should look like this:

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

12/25

{

 "consumerID": "TestconsumerID",

 "requestForm": {

 "requesterSystem": {

 "systemName": "client1",

 "address": "dontcare",

 "port": 8002,

 "authenticationInfo": "null"

 },

 "requestedService": {

 "serviceDefinition": "IndoorTemperature_ProviderExample",

 "interfaces": ["REST-JSON-SENML"],

 "serviceMetadata":{

 "security" : ""

 }

 },

 "orchestrationFlags": {

 "overrideStore" : true,

 "matchmaking" : true,

 "metadataSearch" : false,

 "pingProviders" : false,

 "onlyPreferred" : true,

 "externalServiceRequest" : false

 },

 "preferredProviders": [{

 "providerSystem":{

 "systemName": "SecureTemperatureSensor",

 "address": "10.42.0.103",

 "port":"8000"

 }

 }]

 }

}

Save the file (F2) and exit the mcedit editor (F10).

The Debian midnight commander tool can be started from the command line by typing:

mc -s

The two putty console programs connect via USB to the two ZynqBerry boards and

 display the Ethernet address automatically assigned by the DHCP server.

Run the ConsumerExample

./ConsumerExample

The program should show the following response from the ProviderExample:

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":

"this_is_the_sensor_id","bu": "Celsius"}

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

13/25

The ConsumerExample will fail in the first instance. The database of the Arrowhead-f running
on the RPi3 has to be configured. The ProviderExample and the ConsumerExample have to
be connected by the operator of the databaze. This is described next.

Figure presents win7 laptop screen. There are with two midnight commander programs
running on two ZynqBerry boards.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

14/25

10 Modification of Arrowhead Database
The Arrowhead framework running on RPi3 provides phpMyAdmin interface to control its
database. To allow the ConsumerExample to get the ProducerExample service response,
follow these steps:

1. On your Win7 or Win 10 PC, start web browser and go to the RPi3 phpMyAdmin web
page, http://10.42.0.141/phpmyadmin (use the IP address of your RPi3).

User name: root password: root

2. Get an ID of the ProducerExample.

Select table arrowhead_test_cloud_1→arrowhead_system

and locate the line containing the IP address of the ZynqBerry with system_name
SecureTemperatureSensor.
In our case the ID is 5.

3. Get an ID of the ConsumerExample.

Select table arrowhead_test_cloud_1→ arrowhead_system

Locate the line containing system_name:

client1.

In our case it is 7.

4. Get an ID of the ProducerExample service.

Select table arrowhead_test_cloud_1→ arrowhead_service

Locate the line containing service_definition called:

IndoorTemperature_ProviderExample.
In our case the ID is 55.

5. In table service_registry, check if the ProviderExample is linked with its service.

Link the ProviderExample, its service and the ConsumerExample together. In table

intra_cloud_authorization, add a new line containing: consumer_system_id 7,

provider_system_id 5 and arrowhead_service_id 55.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

15/25

The ConsumerExample should get the proper response from the ProviderExample, now.

11 Test the ZynqBerry Consumer and Producer
The ProducerExample server is running on the “Producer” ZynqBerry board, now.

Execute the ConsumerExample client example on the “Consumer” ZynqBerry board.

./ConsumerExample

The ConsumerExample client example program should show the modelled constant
temperature response (26.0) from the ProviderExample and exit.

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":

"this_is_the_sensor_id","bu": "Celsius"}

This concludes the complete demo of Producer and Consumer on two ZynqBerry boards
omplemented as C++ SW code compatible with the Arrowhead framework G4.0 lite-
installation on the RPi3 board.

Producer service and Consumer client can run on a single Zynqbeery board or two different
ZynqBerry boards. The configuration files and the configuration of the Arrowhead framework
database described in Chapter 6 - Chapter 10 provides setup for single ZynqBerry board.

Change of the setup for two ZynqBerry boards involves only modification of the
corresponding Ethernet addresses assigned by the DHCP server.

The HW accelerated matrix multiplication demo can be executed on both ZynqBerry boards
by executing:

/boot/te06_l.elf

See the HW acceleration measured by the number of Arm A9 clock cycles.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

16/25

12 Producer with real temperature measurement on ZynqBerry
Real temperature of the Xilinx chip of the “producer” ZynqBerry board can be measured by
modified ProviderExample.cpp code. All other files remain identical. Recompile the
ProviderExample project by make. Test it on the the “Provider” ZynqBerry board.

This is source code of the ProviderExample.cpp code measures the temperature of the chip:

#pragma warning(disable:4996)

#include "SensorHandler.h"

#include <sstream>

#include <string>

#include <stdio.h>

#include <thread>

#include <list>

#include <time.h>

#include <iomanip>

#ifdef __linux__

 #include <unistd.h>

#elif _WIN32

 #include <windows.h>

#endif

#define TEMP_RAW_FILE

"/sys/bus/platform/drivers/xadc/f8007100.adc/iio\:device0/in_temp0_raw"

#define TEMP_OFFSET_FILE

"/sys/bus/platform/drivers/xadc/f8007100.adc/iio\:device0/in_temp0_offset"

#define TEMP_SCALE_FILE

"/sys/bus/platform/drivers/xadc/f8007100.adc/iio\:device0/in_temp0_scale"

const std::string version = "4.0";

bool bSecureProviderInterface = false; //Enables HTTPS interface on the

application service (with token enabled)

bool bSecureArrowheadInterface = false; //Enables HTTPS interface towards

ServiceRegistry AH module

inline void parseArguments(int argc, char* argv[]){

 for(int i=1; i<argc; ++i){

 if(strstr("--secureArrowheadInterface", argv[i]))

 bSecureArrowheadInterface = true;

 else if(strstr("--secureProviderInterface", argv[i]))

 bSecureProviderInterface = true;

 }

}

int main(int argc, char* argv[]){

 printf("\n=============================\nProvider Example -

v%s\n=============================\n", version.c_str());

 parseArguments(argc, argv);

 SensorHandler oSensorHandler;

 std::string measuredValue; //JSON - SENML format

 time_t linuxEpochTime = std::time(0);

 std::string sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

 FILE *f_t_raw, *f_t_off, *f_t_scale;

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

17/25

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 if ((f_t_off = fopen(TEMP_OFFSET_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if ((f_t_scale = fopen(TEMP_SCALE_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

 printf("OK\n");

 int t_raw;

 int t_off;

 float t_scale;

 fscanf(f_t_raw, "%d", &t_raw);

 fscanf(f_t_off, "%d", &t_off);

 fscanf(f_t_scale, "%f", &t_scale);

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 printf("OK\n");

 if (fclose(f_t_off) == EOF) {

 printf("Cannot close file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if (fclose(f_t_scale) == EOF) {

 printf("Cannot close file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

 float value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

 std::ostringstream streamObj;

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 std::string sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

 oSensorHandler.processProvider(

 measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

18/25

 while (true) {

 linuxEpochTime = std::time(0);

 sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 fscanf(f_t_raw, "%d", &t_raw);

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

 printf("Zynq Temp : %f °C\n", value);

 streamObj.clear();

 streamObj.str("");

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

 oSensorHandler.processProvider(

 measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

 #ifdef __linux__

 sleep(1);

 #elif _WIN32

 Sleep(1000);

 #endif

 }

 printf("Close file %s ... ", TEMP_RAW_FILE);

 if (fclose(f_t_raw) == EOF) {

 printf("FAILED\n");

 return -1;

 }

 printf("OK\n");

 return 0;

}

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

19/25

13 Configuration of PetaLinux and Debian (optional)
The configuration/compilation of the Petalinux 2018.2 kernel and Debian 9.8 Stretch image is
described in the second part of this application note.

The configuration/compilation requires Ubuntu 2016-04 installation on 64bit virtual machine.
We have used as virtual machine the VMware Workstation 14 Player on Win7 or Win10 PC
based on the Intel i7 CPU (8 processors, 16 GB RAM).

For the Ubuntu image we use the configuration of the VM machine with allocated 6
processors and 8 processors and 8 GB of RAM.

The Petalinux 2018.2 distribution is downloaded to the Ubuntu 2016-04 from

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedde
d-design-tools/2018-2.html

and installed to the default Ubuntu directory:

/opt/petalinux/petalinux-v2018.2-final/settings.sh

To target the Debian OS, and the PetaLinux 2018.2 distribution provided by the Trenz
Electronic requires modification helping to configure the Petalinux kernel image and its file
system on two separate partitions of the SD card.

1. On PC Win7 or Win10 execute all steps as described in chapter 3.

2. Copy to the Ubuntu OS all content of these to Win7 or Win 10 directories:

X:\TE0726_zsys_SDSoC\prebuilt

X:\TE0726_zsys_SDSoC\os

to Ubuntu directories:

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os

/home/devel/work/TV0726//TE0726_zsys_SDSoC/prebuilt

Copy the Debian configuration script install-arrohead-cli-dep.sh from this evaluation
package to

cd /home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/ install-

arrohead-cli-dep.sh

3. In Ubuntu, open linux terminal window and set path to PetaLinux 2018.2 tool (modify
the path if necessary):

source /opt/petalinux/petalinux-v2018.2-final/settings.sh

4. Go to the folder with PetaLinux, it already contains a prepared configuration
according to ZynqBerry board requirements.

cd /home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux

5. The HDF file created (see chapter 3) in Win7 or Win 10 in Vivado 2018.2 tool is
therefore in the Ubuntu folder:

/home/devel/work/TV0726/TE0726_zsys_SDSoC/prebuilt/hardware/m/TE0726_zsys

_SDSoC.hdf

6. Load the HDF to current PetaLinux configuration.

petalinux-config

--get-hw-description=/home/devel/work/TV82/prebuilt/hardware/m

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

20/25

7. Test if the PetaLinux filesystem location is changed from the ramdisk to the extra
partition on the SD card, select:

Image Packaging Configuration --->

 Root filesystem type (SD card) --->

8. Test if option to generate boot args automatically is disabled and if user defined
arguments are set to

console=ttyPS0,115200 earlyprintk root=/dev/mmcblk0p2 rootfstype=ext4 rw

rootwait quiet

Leave the configuration, 3x Exit and Yes.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

21/25

9. Build PetaLinux, from the bash terminal execute

petalinux-build

10. Files image.ub and u-boot.elf are created in Ubuntu folder

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/images/linux/image.ub

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/images/linux/u-boot.elf

14 Configuration and compilation of Debian for ARM (optional)
The file system is based on the latest stable version of Debian 9.8 Stretch distribution (03.
25. 2019). Follow the steps below.

1. Copy the mkdebian.sh file from this evaluation package distribution to the PetaLinux
folder.

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/mkdebian.sh

2. Go to the folder with PetaLinux:

cd /home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux

3. Debian image will be created by execution of the mkdebian.sh script. The script
checks all the tools that are needed to create the image, most of them are a standard
part of the Ubuntu 16.04 LTS distribution. When some of them are missing, install
them.

sudo apt install package_of_the_missing_tool

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

22/25

Next table summarizes all the tools with a corresponding package name.

Tool Package

dd coreutils

losetup mount

parted parted

lsblk util-linux

mkfs.vfat dosfstools

mkfs.ext4 e2fsprogs

debootstrap debootstrap

gzip gzip

cpio cpio

chroot coreutils

apt-get apt

dpkg-reconfigure debconf

sed sed

locale-gen locales

update-locale locales

qemu-arm-static qemu-user-static

4. Create the image with Debian. It will consist of two partitions.

The file system of the first one will be FAT32. This partition is dedicated for image of
the PetaLinux kernel.

The second partition will contain the Debian using EXT4 file system.

Create the Debian image from the external Ethernet repositories by this command:

chmod ugo+x mkdebian.sh

sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language, choose English
(US). The resultant image file will be called te0726-debian.img, its size will be 7 GB.

This step can take some time. It depends on the host machine speed and speed of
the internet connection. Precompiled image can be found in the te0726-arrohead-
client/debian/te0726-debian.img.zip file.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

23/25

5. Compress the created image to file te0726-debian.zip:

zip te0726-debian te0726-debian.img

6. Copy from Ubuntu

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/te0726-debian.zip

to Win7 or Win 10 file:

X:\TE0726_zsys_SDSoC\prebuilt\os\petalinux\default\te0726-debian.zip

7. Copy from Ubuntu

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/images/linux/image.ub

to Win7 or Win 10 file:

X:\TE0726_zsys_SDSoC\prebuilt\os\petalinux\default\image.ub

8. Copy from Ubuntu

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/images/linux/u-

boot.elf

to Win7 or Win 10 file:

X:\TE0726_zsys_SDSoC\prebuilt\os\petalinux\default\u-boot.elf

9. In Ubuntu, clean Petalinux project files

petalinux-build -x mrproper

10. In Ubuntu, delete files

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/te0726-debian.zip

/home/devel/work/TV0726/TE0726_zsys_SDSoC/os/petalinux/te0726-debian.img

11. Shut down the Ubuntu 2016-04 operating system.

12. In Win7 or Win 10, close the VMware Workstation Player 14.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

24/25

You can continue with preparation of the ZynqBerry board (as described in chapters 5 and 6)
and use these re-created files:

 Petalinux kernel image image.ub

 Compressed Debian image te0726-debian.zip

 U-boot program u-boot.elf

This ends the optional configuration and compilation step for the Petalinux and Debian.

15 Package content
├── debian

│ ├── mkdebian.sh

│ ├── image.ub

│ ├── u-boot.elf

│ └── te0726-debian.zip

└── zynq

 ├── TE0726_zsys_SDSoC.zip

 └── install-arrohead-cli-dep.sh

References

[1

[2]]

Trenz Electronic, "TE0726 TRM," [Online].
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-
SDSoC-Voucher?c=350 .

Documents for Arrowhead Framework
Available:https://forge.soa4d.org/docman/?group_id=58

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

25/25

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i.,
and to the maximum extent permitted by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and

(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been
advised of the possibility of the same.

Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

