

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
http://sp.utia.cz

STM32H753 Terminal with TE0723-03-07S-1C
Accelerator - HW Data Movers

Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout, Raissa Likhonina

kadlec@utia.cas.cz xpohl@utia.cas.cz kohoutl@utia.cas.cz likhonina@utia.cas.cz

Revision history
Rev. Date Author Description

0 6.04.2020 J. Kadlec Initial draft
1 23.08.2021 J. Kadlec App. note is addressing details of:

HW data movers for TE0723-03-07S-1C

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Table of Contents
1 Data movers for TE0723-03-07S-1C board .. 1
2 ARM SW API for Streaming of Data ... 2
3 C++ projects for evaluation of HW accelerated copy of data .. 3

Data mover programmable logic requirements ... 9
DSP benchmarks ..10

4 ILA – In-circuit Logic Analyzer ...14
5 References ...15
6 APPENDIX - Confidence test ..17

Compilation and debug of projects from source code ..18
Guide for compilation and use of C MEX functions in scilab-cli20

7 APPENDIX – Design guidelines ..21
Guide for compilation of HW for the xc7z07s device ...21
Guide for configuration and compilation of the PetaLinux ...22
Guide for configuration and compilation of the Debian OS ..24
Guide for creation of SDSoC platform for the TE0723-03-07S-1C26
Guide for creation of shared library and HW data movers ...27

Disclaimer ...29

Table of Figures
Figure 1: HW accelerated data path in Zynq on the TE0723-03-07S-1C board 1
Figure 2: Performance of data copy for different data movers and for SW. 4
Figure 3: Design with ZC data movers. .. 5
Figure 4: Detail of design with ZC data movers. .. 5
Figure 5: Design with DMA data movers.. 6
Figure 6: Detail of design with DMA data movers. ... 6
Figure 7: Design with SG data movers. ... 7
Figure 8: Detail of design with SG data movers. .. 7
Figure 9: Design with SG-malloc data movers. .. 8
Figure 10: Detail of design with SG-malloc data movers. ... 8
Figure 11: Programmable logic resources used in designs with different data movers. 9
Figure 12: Debian terminal, TE0723M-07S device, test of ZC data movers.10
Figure 13: Floating point benchmark scilab-cli scripts. Debian OS tool: mc -s10
Figure 14: scilab-cli script top_mult3.sce is controlled from STM32H753 terminal joystick ...11
Figure 15: STM32H753 terminal screen defined by scilab-cli script top_mult3.sce11
Figure 16: STM32H753 terminal screen defined by scilab-cli script top_md51d.sce12
Figure 17: SP MFLOP/s: A53, A9 and F767, H7A3, H743, H753, H723 MCUs.13
Figure 18: DP MFLOP/s: A53, A9 and F767, H7A3, H743, H753, H723 MCUs.13
Figure 19: AXI-S bus captured by ILA for design with ZC data movers.14

Acknowledgement

This work has been partially supported by ECSEL WAKeMeUP project, No. 783176 [19] and
by the corresponding Czech NFA (MSMT) institutional support project MSMT 8A18001.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/29

1 Data movers for TE0723-03-07S-1C board
This application note describes package for evaluation of STM32H753 terminal with
ArduZynq HW accelerator module [1], [2] supporting Debian OS.

The terminal is using the STM32H753 Nucleo 144 board [12] or [14] and Adafruit TFT display
[17]. The terminal and benchmarks are described in detail in application notes and evaluation
packages [8], [9], [10] and [11]. Terminal with Zynq Ultrascale+ device is described in [7].

Programmable logic (PL) of the Zynq device contains HW data movers serving for
acceleration of data exchange between DDR3L memory and the PL part of the device. HW
data movers write data to a 1024x32bit FIFO HW IP with AXI-Stream data interface.

HW data movers are generated from C source code by the Xilinx SDSoC 2018.2 compiler [3]
in the HW design phase. Several types of data movers can be created. This application note
serves for description and for comparison of these data movers. Figure 1 describes the top
level, SW/HW view of the Zynq system with data movers and the FIFO HW IP.

ZynqBerry TE0723-03-07S-1C board [1] works with Xilinx Zynq XC07007S-1C device with a
single core ARM A9 32 bit processor, 512 MB of DDR3L memory and limited size of
programmable logic on the single 28 nm chip.

The ZynqBerry TE0723-03-07S-1C board (as well as two similar boards TE0723-03M,
TE0723-03-41C64-A with larger Xilinx XC07010-1C chip) are designed and manufactured by
company Trenz Electronic [1], [2], [6].

Figure 1: HW accelerated data path in Zynq on the TE0723-03-07S-1C board

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/29

Input:

• Data copied via AXI stream interface controlled by HW data mover data2hw from the
reserved part of the ARM processor DDR3 memory.

Output:
• Data copied via AXI stream interface controlled by HW data mover capture to the

reserved part of the ARM processor DDR3 memory.

Connectivity:
• AXI stream data input from ARM to the HW data path. The side channel indicates the

last transferred word sent.
• AXI stream data output from the HW data path to ARM. The output AXI stream side

channel indicates the last transferred word.

Interfaces: Device: Clock:

• Data stream AXI-S 32 bit xc7z007sclg225-1 111 MHz
• ARM A9 system clock xc7z007sclg225-1 650 MHz

User SW for the Debian OS can be cross-compiled by the g++ compiler in Xilinx SDK [4] on
Win 10 PC or Ubuntu PC.

Command „make“ can be also used for compilation of the user C++ SW directly on the A9
processor. The HW data communication is represented for the SW developer as a shared
C++ library with simple SW API, identical for several HW data-mover alternatives generated
by the Xilinx SDSoC 2018.2 compiler [3].

2 ARM SW API for Streaming of Data

Serial streaming SW API for HW accelerated data movement from/to the non-cacheable
linear address space memory is defined by sequence of two calls to these asynchronous
non-blocking functions:

void data2hw_wrapper(unsigned *src, unsigned len);
void capture_wrapper(unsigned *storage, unsigned len);

Example:

data2hw_wrapper((unsigned*)A1_A2, len); //1
capture_wrapper((unsigned*)B1_B2, len); //2
…
sds_wait(1);
sds_wait(2);

unsigned *src is pointer to memory start of vector of 32bit wide words of data source
unsigned *storage is pointer to memory start of vector of 32bit wide words of data
destination

sds_wait() synchronization functions are implemented as:

• Functions performing SW pooling in case of DMA and Zero Copy (ZC) data movers.
• Interrupt service routines initiated by an interrupt from the HW data mover in case of

the Scatter Gather (SG) HW data movers.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/29

Arm A9 processor can execute some additional SW instructions in parallel with HW
accelerated copy of data. This SW code should be located in place marked by the … dots.

Calls to blocking functions sds_wait(1) and sds_wait(2) is obligatory. ARM A9
processor SW waits there for the complete end of the HW supported data transfer.

All HW data movers supporting the data communication are represented for the SW
developer in shared C++ Debian OS libraries.

3 C++ projects for evaluation of HW accelerated copy of data

The evaluation package accompanying this application note contains the Xilinx Vivado
2018.2 base support package HW project, four Xilinx SDSoC 2018.2 HW projects and four
Xilinx SDK C++ SW application projects serving for evaluation of four HW data movers.

The base support package HW project contains in PL part of the device one 32 bit wide AXI-
Stream FIFO HW IP. The SDSoC 2018.2 projects generate four versions of HW data-movers
from specification in format of CPP functions with pragmas. The access functions for these
SDSoC generated HW data movers are exported by the SDSoC projects into four shared
libraries. The shared libraries are linked with the Debian OS SW user applications in the
Xilinx SDK SW projects. Test applications run on the 32 bit single core, ARM A9 processor of
the xc7z007sclg225-1 device on the TE0723-03-07S-1C board.

• Zero-Copy (ZC) data movers. HW accelerated copy of data from/to reserved, non-

cacheable, linear address space memory area.
Directory (C++): copy_zc_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_zc_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_zc_1x1_hw.so

• Dma (DMA) data movers. HW accelerated copy of data from/to reserved, non-cacheable,
linear address space memory area.
Directory (C++): copy_dma_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_dma_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_dma_1x1_hw.so

• Scatter-Gather (SG) data movers. HW accelerated copy of data from/to reserved, non-
cacheable, linear address space memory area.
Directory (C++): copy_sg_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_sg_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_sg_1x1_hw.so

• Scatter-Gather Malloc (SG-malloc) data movers. HW accelerated copy of data from/to
standard Debian OS memory area.
Directory (C++): copy_sg_malloc_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_sg_malloc_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_sg_malloc_1x1_hw.so

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/29

The shared Debian Stretch 9.8 OS libraries for the SDK 2018.2 C++ SW flow (g++ compiler)
provide interfaces to the HW data movers. In all four cases, the copy_1x1_sw project
demonstrates performance of HW supported data copy for a single precision floating point
matrix [64x64].

HW data mover performance is compared with the optimized (-O3) ARM host SW
implementation of SW data copy of a single precision floating point matrix [64x64] from user
space memory to linear addressable non-cacheable memory area and back to user space
memory.

TE0723M-07S MByte/s
ZC HW data movers 166.3
ZC SW copy

 19.4

DMA HW data movers 159.0
DMA SW copy

 19.4

SG HW data movers 75.7
SG SW copy

 19.4

SG-malloc HW data movers 9.6
SG-malloc SW copy 236.4

Figure 2: Performance of data copy for different data movers and for SW.

Matrix [64x64] has 4096 32 bit FP32 (single precision floating point) words. HW supported
copy is performed in four blocks of 1024 32 bit words. HW data movers can copy one 32 bit
word each 111 MHz clock in all four cases. This corresponds to a peak performance 444
Mbyte/s. However, this performance is not reached due to the data mover initialization SW
overhead.

The ARM SW data mover initialization overheads are relatively short in case of ZC data
movers (see Figure 2, Figure 4) and DMA data movers (see Figure 5, Figure 6). Data have to
be present in the linear addressable, non-cacheable memory. Se

The initialization overhead is longer in case of SG data movers (see Figure 7, Figure 8) even
if data are present in the linear addressable, non-cacheable memory. This is due to the
overhead related to creation, and release of SW threads implementing the interrupt service
functions.

SG-malloc data mover (see Figure 9, Figure 10) performs copy of data allocated by
standard C++ malloc() function in standard, cached Debian user space memory. SG-
malloc data movers have relatively large SW overhead and relatively low performance for
short data vectors (like in the implemented example). The advantage of SG-malloc data
movers is the possibility to work directly with the Debian user space data allocated by the
standard C/C++ malloc() function. Also performance of the SW copy is high in the SG-
malloc case. SW copy is performed by ARM processing system (PS) and works with
potentially cached data in the Debian user space. SG-malloc data movers work with
advanced cache coherent AXI port (ACP) of the Zynq PS.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/29

SG and SG-malloc data movers (see Figure 7, Figure 8 and Figure 9, Figure 10) use
interrupts and interrupt service routines to indicate the end of data mover operation. Interrupt
service routines are implemented as non-active Debian OS process threads activated only
by the coming interrupt. This solution removes the SW pooling and results in reduced ARM
processor load. The associated cost is an additional SW overhead related to creating,
execution and termination of interrupt service process threads. ZC and DMA data movers use
SW pooling in the sds_wait()synchronization functions. It requires 100% load of one ARM
A9 processor core. The TE0723M-07S device works with single core ARM A9 processor.

Four versions of data movers provided in the evaluation package accompanying this
application note are presented in Figure 3 - Figure 10.

Figure 3: Design with ZC data movers.

Figure 4: Detail of design with ZC data movers.

File:
TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila_release_area\
copy_zc_1x1_hw\zsys.pdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/29

Figure 5: Design with DMA data movers.

Figure 6: Detail of design with DMA data movers.

File:
TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila_release_area\
copy_dma_1x1_hw\zsys.pdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/29

Figure 7: Design with SG data movers.

Figure 8: Detail of design with SG data movers.

File:
TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila_release_area\
copy_sg_1x1_hw\zsys.pdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/29

Figure 9: Design with SG-malloc data movers.

Figure 10: Detail of design with SG-malloc data movers.

File:
TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila_release_area\
copy_sg_malloc_1x1_hw\zsys.pdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/29

Data mover programmable logic requirements

TE0723M-07S Site Type Used Available Util%
ZC Slice LUTs 7704 14400 53.50
ZC Slice Registers 11113 28800 38.59
ZC

Block RAM Tile 9 50 18.00

DMA Slice LUTs 8538 14400 59.29
DMA Slice Registers 12741 28800 44.24
DMA

Block RAM Tile 12.5 50 25.00

SG Slice LUTs 12936 14400 89.83
SG Slice Registers 20804 28800 72.24
SG

Block RAM Tile 22 50 44.00

SG-malloc Slice LUTs 10979 14400 76.24
SG-malloc Slice Registers 16964 28800 58.90
SG-malloc Block RAM Tile 17.5 50 35.00

Figure 11: Programmable logic resources used in designs with different data movers.

Design with ZC data mover is using minimal PL resources (see Figure 11).

Design with DMA data movers is using two AXI Direct Memory Access HW IPs (see Figure 5
and Figure 6).

Design with SG data movers is using two AXI Direct Memory Access HW IPs configured for
SG DMA data transfers. Data movers are connected to S_AXI_HP0 and S_AXI_HP1 high
performance ports of the ZYNQ processor. Design is using two interrupts (see Figure 7 and
Figure 8).

Design with SG-malloc data movers is using one AXI Direct Memory Access HW IPs
configured for SG DMA data transfers. It is connected to the S_AXI_ACP advanced cache
coherent port of the ZYNQ processor. Design is using two interrupts (see Figure 9 and
Figure 10).

Design with SG and SG-malloc data movers require nearly all PL resources of the small
TE0723M-07S device. See Figure 7, Figure 9 and Figure 11.

Details of all four designs can be analysed in the block diagrams (in pdf vector format).
These diagrams are included in the evaluation package accompanying this application note.

Designs can be recompiled in SDSoC 2018.2 and Vivado 2018.2 can be used to see all
details and configuration of HW IPs.

Data mover performance evaluation

Debian console listing from SW application copy_1x1_sw.elf on system with ZC data
movers is presented in Figure 12.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/29

Figure 12: Debian terminal, TE0723M-07S device, test of ZC data movers.

DSP benchmarks
Double and Single precision DSP benchmarks are defined by scilab-cli scripts.
Figure 13 presents the related Debian OS directory structure in midnight commander tool.

Figure 13: Floating point benchmark scilab-cli scripts. Debian OS tool: mc -s

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/29

Figure 14: scilab-cli script top_mult3.sce is controlled from STM32H753 terminal joystick

Figure 15: STM32H753 terminal screen defined by scilab-cli script top_mult3.sce

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/29

Measured matrix multiplication performance of the A9 processor 650 MHz (see Figure 15):

• Double precision [32x32] 136 MFLOP/s
• Double precision [48x48] 136 MFLOP/s
• Double precision [64x64] 112 MFLOP/s
• Single precision [32x32] 152 MFLOP/s
• Single precision [48x48] 156 MFLOP/s
• Single precision [64x64] 151 MFLOP/s

Figure 16: STM32H753 terminal screen defined by scilab-cli script top_md51d.sce

The application note and evaluation package [9] describes in detail the DSP benchmark
algorithms and benchmarks generated by the terminal in scilab-cli [18] scripts. It presents
benchmark results and provides SW projects for the SW4STM32 System Workbench for
STM32 [15] and for the STM32CubeH7 Firmware Package V1.5.0 [16].

Benchmark results for single core A9 MPU on TE0723-03-07S-1C are listed in Figure 17 and
Figure 18. Performance results for other CPUs and MCUs are taken from [9].

The STM32H753Z terminal with TE0723-03-07S-1C shield supports creation and execution
of these DSP and matrix multiplication benchmarks in scilab-cli interpret. See Figure 16.

We compare adaptive RLS QRD Inverse-update identification benchmark [9] for A53 MPU,
single core A9 MPU on TE0723-03-07S-1C shield and STM32F767ZI, STM32H7AZI-Q,
STMH743ZI, STM32H753ZI and STM32H723ZG MCUs. See Figure 17 and Figure 18.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/29

top_51d.sce
Adapt sys. &
C headers
generated
by scripts:

Zynq Us+
A53

1200 MHz
Double

precision
MFLOP/s

TE0723-
03-07S

650 MHz
Double

precision
MFLOP/s

F767
CM7

216 MHz
Double

precision
MFLOP/s

H7A3
CM7

280 MHz
Double

precision
MFLOP/s

H743/53
CM7

400 MHz
Double

precision
MFLOP/s

H723
CM7

520 MHz
Double

precision
MFLOP/s

lf_d1_1_51d 159 83 19.5 25.2 36,4 46,5
lf_d1_2_51d 167 86 20.3 26.3 37.8 48.8
sf_d1_1_51d 48 20 9.6 12.0 18.0 20,6
sf_d1_2_51d 48 20 9.6 13.1 18.0 24,0
lf_d1_3_51d 159 81 19.5 36.4 36.4 46,5
lf_d1_4_51d 159 86 20.3 37.8 37.8 48,8
sf_d1_3_51d 48 20 9.6 12.0 18.0 20,6
sf_d1_4_51d 48 20 9.6 13.1 18.0 24,0
lf_d3_1_51d 211 109 22.6 28.9 39.8 55,3

Figure 17: SP MFLOP/s: A53, A9 and F767, H7A3, H743, H753, H723 MCUs.

top_51f.sce
Adapt sys. &
C headers
generated
by scripts:

Zynq Us+
A53

1200 MHz
Single

precision
MFLOP/s

TE0723-
03-07S

650 MHz
Single

precision
MFLOP/s

F767
CM7

216 MHz
Single

precision
MFLOP/s

H7A3
CM7

280 MHz
Single

precision
MFLOP/s

H743/53
CM7

400 MHz
Single

precision
MFLOP/s

H723
CM7

520 MHz
Single

precision
MFLOP/s

lf_d1_1_51f 189 91 36.9 47.3 68.7 88,9
lf_d1_2_51f 189 97 38.3 49.6 70.3 91,6
sf_d1_1_51f 48 20 14.4 18.0 28.8 28,8
sf_d1_2_51f 48 24 14.4 18.0 28.8 36,0
lf_d1_3_51f 189 94 36.9 47.3 68.7 88,9
lf_d1_4_51f 177 97 38.3 49.6 70.3 91,6
sf_d1_3_51f 48 24 14.4 18.0 28.8 28,8
sf_d1_4_51f 48 20 14.4 18.0 28.8 36,0
lf_d3_1_51f 277 135 47.7 60.9 86.1 114,7

Figure 18: DP MFLOP/s: A53, A9 and F767, H7A3, H743, H753, H723 MCUs.
The evaluation package accompanying this application note provides scilab-cli scripts for
these benchmarks (see [9] for details):

• top_51d.sce Double precision RLS QR Inverse update, no square root.
• top_51f.sce Single precision RLS QR Inverse update, no square root.
• top_51f_100.sce Single precision RLS QR Inverse update, no square root, for M4 MCU.
• top_76d.sce Double precision RLS QR Direct update, no square root.
• top_76f.sce Single precision RLS QR Direct update, no square root.
• top_76f_100.sce Single precision RLS QR Direct update, no square root, for M4 MCU.
• top_77d.sce Double precision RLS QR Direct update, square root.
• top_77f.sce Single precision RLS QR Direct update, square root.
• top_77f_100.sce Single precision RLS QR Direct update, square root, for M4 MCU.
• top_mult3.sce Double and Single precision matrix multiplications.

All these benchmarks can be created and executed by the terminal (see Figure 15 and
Figure 16).

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/29

4 ILA – In-circuit Logic Analyzer
System includes HW IP of the Xilinx Vivado-Lab tool 2018.2 ILA – In-circuit Logic Analyzer.
It is connected to the output of the 1024x32 bit FIFO HW IP. See Figure 1. The start of ILA
capturing can be triggered by logic combination of input values defined by the user from the
connected PC.

ILA monitor displays values of AXI-S stream bus with the 111 MHz clock resolution. It is
configured to store 1024 data samples. See Figure 19.

Figure 19: AXI-S bus captured by ILA for design with ZC data movers.

Figure 19 presents example of data transfer captured by ILA. It corresponds to ARM host
SW copy_1x1_sw.elf and HW design with ZC data movers. It performs HW accelerated
copy of [64x64] floating point matrix. Figure 19 displays AXI-S control signals and part of 32
bit wide transferred floating point data.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/29

5 References

[1] "ArduZynq" Arduino compatible Module with Xilinx Z-7007S Single-Core 512MB DDR3L
https://shop.trenz-electronic.de/en/TE0723-03-11C64-A-ArduZynq-Arduino-compatible-
Module-with-Xilinx-Z-7007S-Single-Core-512MB-DDR3L?c=349

[2] Trenz Electronic Wiki – TE0723 Resources
https://wiki.trenz-electronic.de/display/PD/TE0723+-+ArduZynq

[3] SDSoC - 2018.2 Full Product Installation
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archi
ve-sdsoc.html

[4] Software Development Kit Standalone Web Install Client - 2018.2
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archi
ve-sdk.html

[5] Vivado Lab Solutions - 2018.2
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-
design-tools/archive.html

[6] "ArduZynq" Arduino compatible Xilinx Zynq-7010 SoC-Module
https://shop.trenz-electronic.de/en/TE0723-03-41C64-A-ArduZynq-Arduino-compatible-
Xilinx-Zynq-7010-SoC-Modul?c=349

https://shop.trenz-electronic.de/en/TE0723-03M-ArduZynq-Arduino-compatible-Xilinx-Zynq-
7010-SoC-module?c=349

[7] STM32H753 Terminal with Zynq Ultrascale+ Accelerator
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_2x1_ila_te0706_zu3cg

[8] Benchmarks for STM32H7 MCUs
http://sp.utia.cz/index.php?ids=results&id=STM32H7_benchmarks

[9] INDUSTRIAL 40 NM DEMONSTRATOR NUCLEO STM32H755ZI-Q
http://sp.utia.cz/index.php?ids=results&id=H755ZI-Q

[10] Evaluation version of 8xSIMD FP01x8 accelerator for ArduZynq shield
http://sp.utia.cz/index.php?ids=results&id=te0723_fp01x8

[11] STM32 Nucleo-H743ZI with Adafruit 1.8" TFT Shield V2
http://sp.utia.cz/index.php?ids=results&id=nucleo-LCD-V2

[12] UM1974 User manual STM32 Nucleo-144 boards (MB1137)
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-
mb1137-stmicroelectronics.pdf

[13] UM2408 User manual STM32H7 Nucleo-144 boards (MB1363)
https://www.st.com/resource/en/user_manual/dm00499171-stm32h7-nucleo144-boards-
mb1363-stmicroelectronics.pdf

https://shop.trenz-electronic.de/en/TE0723-03-11C64-A-ArduZynq-Arduino-compatible-Module-with-Xilinx-Z-7007S-Single-Core-512MB-DDR3L?c=349
https://shop.trenz-electronic.de/en/TE0723-03-11C64-A-ArduZynq-Arduino-compatible-Module-with-Xilinx-Z-7007S-Single-Core-512MB-DDR3L?c=349
https://wiki.trenz-electronic.de/display/PD/TE0723+-+ArduZynq
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdsoc.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdsoc.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://shop.trenz-electronic.de/en/TE0723-03-41C64-A-ArduZynq-Arduino-compatible-Xilinx-Zynq-7010-SoC-Modul?c=349
https://shop.trenz-electronic.de/en/TE0723-03-41C64-A-ArduZynq-Arduino-compatible-Xilinx-Zynq-7010-SoC-Modul?c=349
https://shop.trenz-electronic.de/en/TE0723-03M-ArduZynq-Arduino-compatible-Xilinx-Zynq-7010-SoC-module?c=349
https://shop.trenz-electronic.de/en/TE0723-03M-ArduZynq-Arduino-compatible-Xilinx-Zynq-7010-SoC-module?c=349
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_2x1_ila_te0706_zu3cg
http://sp.utia.cz/index.php?ids=results&id=STM32H7_benchmarks
http://sp.utia.cz/index.php?ids=results&id=H755ZI-Q
http://sp.utia.cz/index.php?ids=results&id=te0723_fp01x8
http://sp.utia.cz/index.php?ids=results&id=nucleo-LCD-V2
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00499171-stm32h7-nucleo144-boards-mb1363-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00499171-stm32h7-nucleo144-boards-mb1363-stmicroelectronics.pdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/29

[14] UM2407 User manual STM32H7 Nucleo-144 boards (MB1364)
file:///C:/Users/kadlec/STM32Cube/Repository/UM2407.pdf

[15] SW4STM32 System Workbench for STM32: free IDE on Windows, Linux and OS X
SW4STM32 - System Workbench for STM32: free IDE on Windows, Linux and OS X -
STMicroelectronics

[16] STM32CubeH7 Firmware Package V1.5.0 / 28-June-2019
Avalable for download by STM32CubeMX - STM32Cube initialization code generator.
https://www.st.com/en/development-tools/stm32cubemx.html

[17] Adafruit, „1.8" TFT Display Breakout and Shield,“ 10 02 2019. [Online]. Available:
https://cdn-learn.adafruit.com/downloads/pdf/1-8-tft-display.pdf?timestamp=1558009255

[18] scilab (5.5.2-4+deb9u1). Scientific software package for numerical computations.
https://packages.debian.org/stretch/scilab

[19] WAKeMeUp, Wafers for Automotive and other Key applications using Memories,
embedded in Ulsi Processors. Project number ECSEL No. 783176
http://www.wakemeup-ecsel.eu/

https://www.st.com/en/development-tools/sw4stm32.html
https://www.st.com/en/development-tools/sw4stm32.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://cdn-learn.adafruit.com/downloads/pdf/1-8-tft-display.pdf?timestamp=1558009255
https://packages.debian.org/stretch/scilab
http://www.wakemeup-ecsel.eu/

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/29

6 APPENDIX - Confidence test

This is basic confidence test of the evaluation package.

Unzip evaluation package to Win 10 directory of your choice. We will use:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\

Precompiled HW and SW projects are located in directory:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release\copy_zc_1x1_sw

Compressed SD card image with ARM Debian OS is located in directory:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release_sdcard\

INSTALLATION OF TOOLS

• Install Xilinx SDK 2018.2 on Win 10 PC 64 bit [3].
• Install Xilinx Lab Tools 2018.2 on Win 10 PC 64 bit [5].
• Install Win32DiskImager for writing of image to 16 GB SD card, (Class 10).
• Install Putty (for USB based serial console and Ethernet based serial console).
• Unzip ARM Debian OS disk image on Win 10 PC and use the Win32DiskImager to

write the disk image (16 GB) from the PC to the 16 GB SD card (Class 10).

Before test on the ZynqBerry board, you have to write to the on-board FLASH the correct
BOOT.BIN file with the bit-stream. It is done by performing these steps:

• Remove SD card from the TE0723-03-07S-1C board.
• Connect the TE0723-03-07S-1C board to PC by the USB serial terminal cable.
• Copy the BOOT.BIN file from

c:\home\work\TS82fp01x8_TE0723\xc7z07s_deb_eval_fifo_ila_rel
ease\copy_zc_1x1_sw\Release\sd_card\BOOT.BIN
to
c:\home\work\TS82fp01x8_TE0723\xc7z07s_deb_eval_fifo_ila\zsy
s\prebuilt\boot_images\m\NA\BOOT.BIN

• Change directory to
c:\home\work\TS82fp01x8_TE0723\xc7z07s_deb_eval_fifo_ila\zsy
s

Execute this script in Win 10 terminal:

program_flash_binfile.cmd

This script will write content of the BOOT.BIN file to the ZynqBerry board flash.

• Power-off the TE0723-03-07S-1C board by removing the USB cable from the PC.

HW SETUP
• Insert the SD card with Debian OS disk image to the TE0723-03-07S-1C board.
• Connect PC and TE0723-03-07S-1C board to Ethernet.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/29

• Connect USB serial terminal cable to TE0723-03-07S-1C to PC. This will power-on
the board.

TEST
• TE0723-03-07S-1C board will start to boot Debian OS. The boot process starts by

reading data from the BOOT.BIN present in the internal flash. Only the second stage
of the boot process is performed from the SD card.

• In Win 10 PC, open Putty terminal. Set it to:
 (115200 bps, 8 data bits, stop bit 1, parity none, flow control off)

• Use Putty terminal to login as user: root password: root
• Change directory to /boot
• Export path to the shared library. Type in the Putty Debian OS terminal:

export LD_LIBRARY_PATH=/boot

•
Start application code by typing in the Putty Debian OS terminal:

./copy_zc_1x1_sw.elf

RESULT
• The application will copy single precision floating point by:

o SW on host ARM A9 processor
o HW accelerated on host ARM A9 processor by zero copy (ZC) data movers.

• Results of ARM SW and HW accelerated copy are compared to be identical and
Mbyte/s performance is measured, computed and displayed. See Figure 12.

Compilation and debug of projects from source code
The evaluation package includes SW projects for Xilinx SDK 2018.2 tool running on Win 10.

These projects can be recompiled for ARM and executed on Zynq with or without debugging
support. Open SDK 2018.2 tool, in this working directory:

c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release\copy_zc_1x1_sw\

Projects in this directory link to this shared library:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release\copy_zc_1x1_sw\Release\sd_card\libcopy_zc_1x1_hw.so
or
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release\copy_zc_1x1_sw\Debug\sd_card\libcopy_zc_1x1_hw.so

Projects have two configurations:

• Debug for debugging with –O0 flag with debug information symbols included.
• Release for maximal performance with -O3 flag and without debug symbols.

You can modify and re-compile the SW code in the Xilinx SDK 2018.2 tool on Win 10 PC.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/29

Recompile ARM host SW application directly on the TE0723-03-07S-1C board

Xilinx SDK 2018.2 tool creates files for the make utility, which can be used for compilation of
SW application directly on the board with use of the g++ (C++) compiler of the ARM Debian
OS.

You can copy complete SDK 2018.2 project to the Debian file system and compile on board
by copy complete content of the C++ SDK project directory:

c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fif
o_ila_release\copy_zc_1x1_sw\

to the ARM host Debian OS directory:

/home/copy_zc_1x1_sw/

Change the directory in ARM Debian OS to:

cd /home/copy_zc_1x1_sw/Debug/

Export the relative path to the Debug version of the shared library:

export LD_DATA_PATH=../../Debug/sd_card

In the Debian OS terminal, clean and then recompile the project by typing:

make clean
make

Finally, execute the re-compiled C++ Debug version of the SW application compiled by the
ARM host Debian OS g++ compiler. Type in the Debian console:

./copy_zc_1x1_sw.elf

You are done. The compiled application is running on the TE0723 board. See Figure 12.
To close correctly the Debian OS, type in the Debian OS terminal:

halt

This will close all open files on the SD file system and halt the ARM Debian OS.

Now you can safely remove the SD card. The USB serial terminal can remain connected.
You can modify the SD card in the Win 10 PC.
You can insert modified SD card.
You have to press the reset on the board to initiate a new Debian OS boot process (without
the power-off power-on step).

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/29

Guide for compilation and use of C MEX functions in scilab-cli
The Debian OS image includes scilab-cli . It is command line version of the scilab SW
interpret [18]. To use it, take these steps. In Debian OS terminal, change directory to

cd /home/mflop/cc/cc_mult3d

In Debian OS terminal, Start scilab-cli interpret by typing

scilab-cli

In scilab-cli, execute script mult3_cc.sce by command

exec(”mult3_cc.sce.sce”)

This script will compile C MEX function mult3.c to shared library libmex_mult3.so
in the same directory

Quit scilab-cli by typing

quit

Copy created shared library libmex_mult3.so

/home/mflop/cc/cc_mult3d/libmex_mult3.so

to

/home/mflop/test/test_mult3/libmex_mult3.so

In Debian terminal, change directory to

/home/test/test_mult3

Start scilab-cli by typing

scilab-cli

In scilab-cli execute script multf_32_test.sce by command

exec(”mult3_32_test.sce”)

scilab-cli will call and execute mult3() C MEX function present in shared library
libmex_mult3.so , measures execution time and also generates data header files in
./mult3_32/ subdirectory. Created header files contain single precision floating point
reference data used in STM32H7 projects for testing of C implementations on MCU devices.

Quit scilab-cli by typing.
quit

MEX C code is compiled with –O2. Use Make_me.sh script to compile with –O3.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/29

7 APPENDIX – Design guidelines

Guide for compilation of HW for the xc7z07s device
1. Unpack the evaluation package to Win 10 directory. In this guide, we unpack to this

directory:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila
\
Change directory to:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila
\zsys\

2. On Win 10, open dos terminal window, change directory to the folder
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila
\zsys\

3. To overcome limitations of Win 10 related to the need of short directory paths, use
the script _use_virtual_drive.cmd to create a virtual short path to your directory drive
X:\zusys Type command:
_use_virtual_drive.cmd
Select X as name of the virtual drive and select 0 to create the virtual drive.
Go to the created virtual short-path directory by typing in the win 10 terminal:
X:

cd zsys

4. Use text editor of your choice and open and modify script design_basic_settings.sh
Select correct path to SDSoC 2018.2 tool installed on your Win7 or Win 10. Line 38:
@set XILDIR=C:/Xilinx
Select proper Xilinx device:
@set PARTNUMBER=4
The selected number corresponds to the number defined in file
X:\zusys\board_files/TE0808_board_files.csv
Verify, if line 78 of script design_basic_settings.sh sets the SDSoC flow support by:
ENABLE_SDSOC=1
@set ENABLE_SDSOC=1

5. Start the Xilinx Vivado 2018.2 and create the design by executing of script:
X:\zsys\vivado_create_project_guimode.cmd

6. Optional:
You can use Vivado automation and to the created HW design Xilinx In Circuit Logic
Analyzer (ILA) monitor to enable capturing of selected accelerator outputs of your
choice.

7. In Vivado console, execute command:
TE::hw_build_design -export_prebuilt

After the Vivado compilation, new hardware description file zsys.hdf is generated in
folder:
X:\zsys\prebuilt\hardware\m\zsys.hdf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/29

Guide for configuration and compilation of the PetaLinux
The configuration and compilation of the Petalinux 2018.2 kernel and Debian 9.8 Stretch
image as the FitOptiVis run time resource for the Zynq TE0723-03-07S-1C board is
described now. The configuration has to be performed in the Ubuntu 16.04 LTS OS. The
evaluation package is using the Ubuntu 16.04 LTS in the VMware Workstation Player in Win
10. The Petalinux 2018.2 distribution can be downloaded to the Ubuntu 16.04 LTS from

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedde
d-design-tools/2018-2.html

and installed to the default Ubuntu directory:
/opt/petalinux/petalinux-v2018.2-final

The standard PetaLinux 2018.2 distribution requires few modifications.

1. Copy content of these Win 10 directories:
X:\zsys\prebuilt

X:\zsys\os

to Ubuntu directories:
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/prebuilt/

/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/

2. In Ubuntu, open terminal window and set path to the PetaLinux 2018.2:
source /opt/petalinux/petalinux-v2018.2-final/settings.sh

3. Change directory to the directory copied from the evaluation package with pre-
defined configuration:
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/

It contains a predefined configuration according to Zynq TE0723-03-07S-1C board
requirements.

4. The zsys.hdf file created in Win 10 in Vivado 2018.2 tool is present in the Ubuntu
folder:
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/prebuilt/prebuilt/hardware/7s/

5. Use the zusys.hdf file as input for the PetaLinux configuration by (on single line)
petalinux-config --get-hw-
description=/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_d
eb_eval_fifo_ila/zsys/prebuilt/prebuilt/hardware/7s/

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/29

6. Verify if the PetaLinux filesystem location is changed from the ramdisk to the extra
partition on the SD card, select:
Image Packaging Configuration --->

 Root filesystem type (SD card) --->

7. Verify if option to generate boot args. automatically is disabled and if user defined
arguments are set to:
earlycon clk_ignore_unused root=/dev/mmcblk0p2 rootfstype=ext4 rw
rootwait quiet
Leave the configuration, 3x Exit and Yes.

8. Build PetaLinux, from the bash terminal execute
petalinux-build

9. Files image.ub, u-boot.elf and bl31.elf are created in:
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/images/linux/image.ub
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo_ila
/zsys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo_ila
/zsys/os/petalinux/images/linux/bl31.elf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/29

Guide for configuration and compilation of the Debian OS
The file system is based on the latest stable version of Debian 9.8 Stretch distribution (03.
25. 2019). Follow the steps below.

10. In Debian, cd to the folder with PetaLinux:
cd
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/

11. The 32bit Debian image will be created by execution of the mkdebian.sh script. The
script checks all the tools that are needed to create the image, most of them are a
standard part of the Ubuntu 16.04 LTS distribution.
When some of them are missing, install them by:
sudo apt install Package

Table 1: tools with a corresponding package name.

Tool Package
dd coreutils
losetup mount
parted parted
lsblk util-linux
mkfs.vfat dosfstools
mkfs.ext4 e2fsprogs
debootstrap debootstrap
gzip gzip
cpio cpio
chroot coreutils
apt-get apt
dpkg-reconfigure debconf
sed sed
locale-gen locales
update-locale locales
qemu-ARM-static qemu-user-static

12. Create the Debian image. It will consist of two partitions.

The file system of the first one will be FAT32. This partition is dedicated for image of
the PetaLinux kernel. The second partition will contain the Debian using EXT4 file
system. Create the Debian image from the external Ethernet repositories by this
command:
chmod ugo+x mkdebian.sh

sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language. Choose English
(US). The resultant image file will be called TE0723-debian.img its size will be 7 GB.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/29

13. Compress the created image to file TE0723-debian.zip:

zip TE0723-debian TE0723-debian.img

14. Copy compressed image file from Ubuntu
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/TE0723-debian.zip

to Win 10 file:
X:\zsys\prebuilt\os\petalinux\default\TE0723-debian.zip

15. Copy these files from Ubuntu
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/images/linux/image.ub

/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/images/linux/bl31.elf

to Win 10 files:
X:\zsys\prebuilt\os\petalinux\default\image.ub

X:\zsys\prebuilt\os\petalinux\default\u-boot.elf

X:\zsys\prebuilt\os\petalinux\default\bl31.elf

16. In Ubuntu, clean Petalinux project files
petalinux-build -x mrproper

17. In Ubuntu, delete files
/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/TE0723-debian.zip

/home/devel/work/TS82fp01x8_TE0723_TERMINAL_xc7z07s/xc7z07s_deb_eval_fifo
_ila/zsys/os/petalinux/TE0723-debian.img

18. In Ubuntu, close all applications and shut down Linux.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/29

19. In Win 10, close the VMware Workstation Player.
You can continue with preparation of the Zynq board with created files:

• Petalinux kernel image image.ub
• Compressed Debian image TE0723-debian.zip
• U-boot program u-boot.elf

This ends the DTRiMC tool configuration and compilation steps for the Petalinux and Debian.

Guide for creation of SDSoC platform for the TE0723-03-07S-1C
20. In the open Vivado 2018.2 console, create and compile the initial BOOT.bin file and

the initial SW modules by execution of the command:
TE::sw_run_hsi

The resulting BOOT.bin file will be located in the folder
X:\zsys\prebuilt\boot_images\m\u-boot\BOOT.bin

21. These files are created:
X:\zsys\prebuilt\software\m\hello_TE0723.elf

X:\zsys\prebuilt\software\m\zynq_fsbl.elf

X:\zsys\prebuilt\software\m\zynq_fsbl_flash.elf

File zynq_fsbl.elf is correct first stage board loader (FSBL) file, while the
zynq_fsbl_flash.elf is special FSBL file used only for programming of the on board
flash.

22. Move zynq_fsbl_flash.elf file to some different temporary location before next
step.

23. In Vivado 2018.2 console, create the SDSoC platform by execution of the command:
TE::ADV::beta_util_sdsoc_project

The SDSoC 2018.2 platform is generated in the directory
X:\SDSoC_PFM\TE0723\03m\zsys

and it is also packed into the ZIP file in directory
X:\SDSoC_PFM\TE0723\

24. Return zynq_fsbl_flash.elf file back from the temporary location to
X:\zsys\prebuilt\software\m\zynq_fsbl_flash.elf
It will be used later on by the TE0723-03-07S-1C board flash programming script
program_flash_binfile.cmd

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/29

Guide for creation of shared library and HW data movers
25. On Win 10, in the open dos terminal window, cancel the current virtual drive X: by

executing from the command line
_use_virtual_drive.cmd

and response (1)
26. Change directory to

c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_fifo_ila
\SDSoC_PFM\TE0723-03\07s-1c\

27. In Win 10, open dos terminal window and use the copy of the script
_use_virtual_drive.cmd to create a new virtual short path to get short SDSoC
directory X:\07s-1c
_use_virtual_drive.cmd
Select X as name of the virtual drive and select (0) to create the virtual drive.
Go to the created virtual short-path directory by:
X:

cd 07s-1c

28. Open SDSoC 2018.2 project in directory
X:\07s-1c

29. In SDSoC import four HW data mover design projects:
copy_dma_1x1_hw

copy_sg_1x1_hw

copy_sg_malloc_1x1_hw

copy_zc_1x1_hw

from the directory with source-code of SDSoC projects
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval_ila\SDSo
C_PFM_src\TE0723-03\07s-1c\
In SDSoC select the custom SDSoC platform
X:\07s-1c\zsys

30. Change imported project from Debug to the Release compilation target
31. Compile project by the Xilinx SDSoC 2018.2 compiler
32. Result of compilation are the SD cards with the BOOT.BIN file and the shared object

library file libcopy_zc_1x1_hw.so in:
X:\07s-1c\copy_dma_1x1_hw\Release\sd_card\
X:\07s-1c\copy_sg_1x1_hw\Release\sd_card\
X:\07s-1c\copy_sg_malloc_1x1_hw\Release\sd_card\
X:\07s-1c\copy_zc_1x1_hw\Release\sd_card\

33. For all four projects, copy content of these directories like:
X:\07s-1c\copy_zc_1x1_hw\Release\sd_card\

to
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval__ila_rel
ease\copy_zc_1x1_sw\Release\sd_card\
and also like:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval__ila_rel
ease\copy_zc_1x1_sw\Debug\sd_card\

34. Optional:
For all four data mover projects, copy ILA nets definition files debug_nets.ltx and
zsys_wrapper.ltx from the directory like:

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

28/29

X:\07s-1c\copy_zc_1x1_hw\Release_sds\p0\vivado\prj\prj.runs\impl_1\

to
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval__ila_rel
ease\copy_zc_1x1_sw\Release\sd_card\

and also to:
c:\home\work\TS82fp01x8_TE0723_TERMINAL_xc7z07s\xc7z07s_deb_eval__ila_rel
ease\copy_zc_1x1_sw\Debug\sd_card\

35. In SDSoC, clean all four SDSoC projects to save disk space.
36. Close Xilinx SDSoC 2018.2 tool.
37. The created BOOT.BIN files will be used for programming of the TE0723-03-07S-1C

board flash. The shared object library files like the libcopy_zc_1x1_hw.so will be
linked to applications compiled for ARM in SDK and also used in the runtime on ARM.

This is described in the first section of the chapter 10 APPENDIX - Confidence test.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

29/29

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i.,
and to the maximum extent permitted by applicable law:
(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and
(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been
advised of the possibility of the same.
Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

	1 Data movers for TE0723-03-07S-1C board
	2 ARM SW API for Streaming of Data
	3 C++ projects for evaluation of HW accelerated copy of data
	Data mover programmable logic requirements
	DSP benchmarks

	4 ILA – In-circuit Logic Analyzer
	5 References
	6 APPENDIX - Confidence test
	Compilation and debug of projects from source code
	Guide for compilation and use of C MEX functions in scilab-cli

	7 APPENDIX – Design guidelines
	Guide for compilation of HW for the xc7z07s device
	Guide for configuration and compilation of the PetaLinux
	Guide for configuration and compilation of the Debian OS
	Guide for creation of SDSoC platform for the TE0723-03-07S-1C
	Guide for creation of shared library and HW data movers

	Disclaimer

