

© 2020 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note

http://sp.utia.cz

STM32H753 Terminal
with Zynq Ultrascale+ Accelerator

Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout, Raissa Likhonina
kadlec@utia.cas.cz xpohl@utia.cas.cz kohoutl@utia.cas.cz likhonina@utia.cas.cz

Revision history

Rev. Date Author Description
0 27.07.2021 J. Kadlec Initial draft
1
2

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

ii

Table of Contents

1 STM32H753 Terminal with Zynq Ultrascale+ Accelerator ...1
2 Zynq Ultrascale+ 8xSIMD FP03x8 HW accelerators ...5

Integration of 8xSIMD FP03x8 accelerators ..6
Supported Zynq Ultrascale+ devices and modules ...7
General use of 8xSIMD FP03x8 accelerators ...8
Parameters of 8xSIMD FP03x8 accelerators (same for 03CG,03EG,04EV)......................9

3 Programming of 8xSIMD FP03x8 floating point accelerators ..12
4 Evaluation of performance of Zynq Ultrascale+ accelerator ..13

FP32 performance of 03CG, 03EG and 04EV accelerators ..17
5 Power consumption ..18
6 ILA – In-circuit Logic Analyzer ...19
7 License ...21
8 Conclusion ..21

Reconfiguration of accelerator by change of firmware ...22
SW flexibility and performance of SDSoC accelerators ...22
SW flexibility and performance of Arm A53 NEON accelerator22
Comparison of effectivity of used HW resources ...22

9 References ...23
APPENDIX - Confidence test ..24

Compilation and debug of projects from source code ..24
DEBUG of SW application from Xilinx SDK 2018.2 ...25
Use of C MEX functions in Scilab ..28

10 APPENDIX – System design guidelines ..28
Guide for compilation of HW ...29
Guide for configuration and compilation of PetaLinux ...29
Guide for configuration and compilation of Debian OS ..32
Guide for creation of SDSoC platform OS ...34
Guide for creation of shared library and HW kernel ...34
Guide for retargeting for Zynq Ultrascale+ device/module ...36

Disclaimer ...37

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

iii

Table of Figures

Figure 1: Stacked boards of the STM32H753 terminal with Zynq Ultrascale+ accelerator1
Figure 2: Nucleo 144 STM32H753 terminal with Zynq Ultrascale+ accelerator2
Figure 3: Terminal graphical output in scilab on remote Debian X11 desktop3
Figure 4: Zynq Ultrascale+ SoC device with HW accelerators ...5
Figure 5: Internal structure of the 8xSIMD FP03x8 HW accelerator ..6
Figure 6: Internal block rams of accelerators. ...9
Figure 7: Floating point functions present in all accelerators {10 or 20 or 30 or 40}.11
Figure 8: Specific functions present only in some versions accelerators.11
Figure 9: Structure of the 128 bit wide VLIW program instruction. ..12
Figure 10: Console output from matrix multiplication: matmultf0.elf.16
Figure 11: Terminal is running A53 matmultf0 application. Control from remote desktop.18
Figure 12: Control of execution of A53 scilab by STM32H753 terminal joystick menu.19
Figure 13: Instruction vz2a. ..20
Figure 14: Instruction vz2a detail. ...20
Figure 15: Define the environment variable. ...25
Figure 16: Test connection to Linux TCF Agent. ...26

Acknowledgement

This work has been partially supported by ECSEL WAeMeUP project, No. 783176 [1] and by
the corresponding Czech NFA (MSMT) institutional support project MSMT 8A18001.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/37

1 STM32H753 Terminal with Zynq Ultrascale+ Accelerator

This application note was developed in the frame of ECSEL JU project WAKeMeUP [1].

The application note and the corresponding evaluation package describes STM32H753
Nucleo 144 board based terminal with, an Adafruit TFT display and Zynq Ultrascale+
accelerator on TE0820 module and TE0706 carrier board. See Figure 1.

Figure 1: Stacked boards of the STM32H753 terminal with Zynq Ultrascale+ accelerator

Complete terminal is presented in Figure 2.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/37

Figure 2: Nucleo 144 STM32H753 terminal with Zynq Ultrascale+ accelerator

 The Nucleo STM32H753ZI board [2] is product of ST Microelectronics.

 The Adafruit TFT display [3] is product of Adafruit.

 The TE0820 modules [4], [5], [6] and the TE0706 carrier board [7] are products of Trenz
Electronic.

Source code of SW project for the “System Workbench for STM32” (AC6) tool [11] for the
Nucleo-144 STM32H753ZI board is included in the released evaluation package
accompanying this application note.

SW project is using the STM32CubeH7 Firmware Package V1.5.0 available for download
with the STM32CubeMX – The STM32Cube initialization code generator [12].

These SW development packages are provided free of charge by STMicroelectronics.

The Zynq Ultrascale+ Debian OS supports Scilab interpret [8]. Scilab scripts prepare and
visualize double precision matrix data and also call compiled C/C++ functions with MEX
format identical to Matlab. In the terminal application, Scilab executes user defined script and
acts as server for the STM32H7 MCU terminal.

Scilab scripts define content of user menus and execute calls to precompiled MEX functions
executed on Arm A53 1.2 GHz microprocessor of the Zynq Ultrascale+ device.

Scilab can also use the ssh PuTTY terminal for 1Gbit fixed line Ethernet connection to a
remote X11 Desktop for visualization of simulation results.

See Figure 3 and also
Figure 11 and
Figure 12.

Scilab script also save computed data in ascii format as .h C/C++ header files on the
SD_card. These header files with “golden” data are used for port of data to benchmark
STM32H7 SW projects.

Scilab measures also the Arm A53 execution time and converts it to single and double
floating point performance data. These data are used for comparison with the single and
double floating point performance of these STM32H7 (MCUs):

 NUCLEO-H743ZI2 Mounted Device : STM32H743ZITx (M7 MCU) [2]

 NUCLEO-H753ZI Mounted Device : STM32H753ZITx (M7 MCU) [2]

 NUCLEO-H755ZI-Q Mounted Device : STM32H755ZITx (M7+M4 MCUs) [10]

 NUCLEO-H7A3ZI-Q Mounted Device : STM32H7A3ZITxQ (M7 MCU) [10]

 NUCLEO-H723ZG Mounted Device : STM32H723ZGTx (M7 MCU) [2]
Results of this comparison and the complete list of created and released SW projects for the
STM32Cube_FW_H7_1.5.0 framework with AC6 tool and STM32Cube_FW_H7_1.9.0 with
STM32CubeIDE 1.7.0 tool are described in the application note [9]. Projects can be
downloaded in source code in the evaluation package accompanying the application note [9].

The application note [9] describes STM32H753 terminal with Zynq accelerator on the
ArduZynq Arduino compatible shield. It supports Debian OS and the command line scilab-cli
interpret client. Both terminals generate identical test data for the SW benchmark projects for

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/37

evaluation of performance of several STM32H7 devices. The terminal with Zynq Ultrascale+
scilab supports the graphic output to the X11 remote desktop. See Figure 3.

Figure 3: Terminal graphical output in scilab on remote Debian X11 desktop

The ARM A53 processor on TE0706 carrier board is connected to the STM753ZI CM7 MCU
device on NUCLEO-H753ZI board by two wire USART serial line with baud rate 460800
bits/s. This USART connection is using the LVCMOS33 logic (0-3.3V).

Enabled in NUCLEO-H753ZI CM7 MCU Enabled in Zynq Ultrascale+ MPU

Tx PC6 D16 pin 1 in CN7 connector Rx UART1 rxd MIO29 bank LVCMOS33

Rx PC7 D21 pin 11 in CN7 connector Tx UART1 txd MIO28 bank LVCMOS33

The serial asynchronous communication is configured in the main application program of the
STM753ZI CM7 MCU for the USART6 device. See source code in the evaluation package.
In case of ARM A53 Debian OS, the corresponding UART1 device is accessible as
/dev/ttyPS1. The baud rate 460800 bits/s is set in scilab by executing shell command:

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/37

stat=host("stty 460800 < /dev/ttyPS1");
See source code of scilab scripts in the evaluation package accompanying this app. note.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/37

2 Zynq Ultrascale+ 8xSIMD FP03x8 HW accelerators

Programmable logic part of the ZynqUltrascale+ device contains evaluation versions of two
8xSIMD FP03x8 single precision FP32 floating-point, run-time-reconfigurable accelerators.
See Figure 4. These accelerators serve as reprogrammable, general purpose HW
accelerators of sequences of floating point vector operations involving vector ADD, SUB
MUL, DIV and vector Dot-Product operations. See Figure 5.

The programmable logic part of the Zynq Ultrascale+ device also contains fixed hardware for
single precision FP32 floating point matrix multiplication and addition. Matrices must have
fixed size [16x16]. It is example of the HW accelerator designed with the Xilinx SDSoC
2018.2 system level compiler. This fixed HW accelerator serves for performance comparison
with the two 8xSIMD FP03x8 run-time reprogrammable HW accelerators. See Figure 4.

Figure 4: Zynq Ultrascale+ SoC device with HW accelerators

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/37

Figure 5: Internal structure of the 8xSIMD FP03x8 HW accelerator

Integration of 8xSIMD FP03x8 accelerators

Input:

 Program firmware data received via AXI stream interface from Arm processor.

 Configuration Write registers for scalar control received via AXI-lite interface from Arm
processor.

 Floating point single precision data received via AXI stream interface from Arm
processor.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/37

Output:

 Registers indicating end of program accessible to Arm processor via AXI-lite.

 Floating point single precision result data accessible via AXI stream interface for the
Arm processor.

Connectivity:

 AXI stream data/program input from ARM to HW accelerator with input FIFO
1024x32. The side channel indicates the last transferred word sent to the component
via the DMA transaction from ARM processor.

 AXI stream data/program output from HW accelerator to ARM. The output side
channel indicates the last transferred word sent from the component to Arm
processor.

 AXI-lite input/output configuration registers.

Supported Zynq Ultrascale+ devices and modules

This application note and evaluation package supports these Trenz Electronic modules:
ID Module Partname Memory ShortName Ref.
2 TE0820-02-02EG-1E xczu2eg-sfvc784-1-e 1GB 2eg_1e_1gb
3 TE0820-02-02EG-1E3 xczu2eg-sfvc784-1-e 1GB 2eg_1e_1gb
4 TE0820-02-02CG-1E xczu2cg-sfvc784-1-e 1GB 2cg_1e_1gb
5 TE0820-02-03EG-1E xczu3eg-sfvc784-1-e 1GB 3eg_1e_1gb
6 TE0820-02-03EG-1E3 xczu3eg-sfvc784-1-e 1GB 3eg_1e_1gb
7 TE0820-02-03CG-1E xczu3cg-sfvc784-1-e 1GB 3cg_1e_1gb

8 TE0820-02-02EG-1EA xczu2eg-sfvc784-1-e 1GB 2eg_1e_1gb
9 TE0820-02-02EG-1EL xczu2eg-sfvc784-1-e 1GB 2eg_1e_1gb
10 TE0820-02-02CG-1EA xczu2cg-sfvc784-1-e 1GB 2cg_1e_1gb
11 TE0820-02-03EG-1EA xczu3eg-sfvc784-1-e 1GB 3eg_1e_1gb
12 TE0820-02-03EG-1EL xczu3eg-sfvc784-1-e 1GB 3eg_1e_1gb
13 TE0820-02-03CG-1EA xczu3cg-sfvc784-1-e 1GB 3cg_1e_1gb
14 TE0820-02-04CG-1EA xczu4cg-sfvc784-1-e 1GB 4cg_1e_1gb
15 TE0820-03-04EV-1EA xczu4ev-sfvc784-1-e 2GB 4ev_1e_2gb
16 TE0820-03-02CG-1EA xczu2cg-sfvc784-1-e 2GB 2cg_1e_2gb
17 TE0820-03-02EG-1EA xczu2eg-sfvc784-1-e 2GB 2eg_1e_2gb
18 TE0820-03-02EG-1EL xczu2eg-sfvc784-1-e 2GB 2eg_1e_2gb
19 TE0820-03-03CG-1EA xczu3cg-sfvc784-1-e 2GB 3cg_1e_2gb
20 TE0820-03-04CG-1EA xczu4cg-sfvc784-1-e 2GB 4cg_1e_2gb
21 TE0820-03-03EG-1EA xczu3eg-sfvc784-1-e 2GB 3eg_1e_2gb
22 TE0820-03-03EG-1EL xczu3eg-sfvc784-1-e 2GB 3eg_1e_2gb
23 TE0820-03-2AI21FA xczu2cg-sfvc784-1-i 2GB 2cg_1i_2gb
24 TE0820-03-2BE21FL xczu2eg-sfvc784-1-e 2GB 2eg_1e_2gb
25 TE0820-03-3AI210A xczu3cg-sfvc784-1-i 2GB 3cg_1i_2gb
26 TE0820-03-3BE21FA xczu3eg-sfvc784-1-e 2GB 3eg_1e_2gb [5]
27 TE0820-03-3BE21FL xczu3eg-sfvc784-1-e 2GB 3eg_1e_2gb
28 TE0820-03-02CG-1ED xczu2cg-sfvc784-1-e 2GB 2cg_1e_2gb
29 TE0820-03-2AE21FA xczu2cg-sfvc784-1-e 2GB 2cg_1e_2gb
30 TE0820-03-2BE21FA xczu2eg-sfvc784-1-e 2GB 2eg_1e_2gb
31 TE0820-03-3AE21FA xczu3cg-sfvc784-1-e 2GB 3cg_1e_2gb [4]
32 TE0820-03-3AI21FA xczu3cg-sfvc784-1-i 2GB 3cg_1e_2gb
33 TE0820-03-4AE21FA xczu4cg-sfvc784-1-e 2GB 4cg_1e_2gb
34 TE0820-03-4DE21FA xczu3cg-sfvc784-1-e 2GB 4ev_1e_2gb [6]
35 TE0820-03-4DI21FA xczu3cg-sfvc784-1-i 2GB 4ev_1i_2gb

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/37

UTIA has used modules highlighted in bold in the list above and assembled three terminal
instances of the STM32H753 terminal withZynq Ultrascale+ accelerator. The evaluation
package accompanying this application note has been used for integraton of two 8xSIMD
HW accelerators and for configuration and compilation of Linux Debian OS.

 STM32H753 with TE0820-02-03CG-1E module is using xczu3cg-sfvc784-1-e Zynq

UltraScale+ device and 1 GB DDR4 memory. It has dual core Arm A53 processor,
and no GPU graphic accelerator.

 STM32H753 with TE0820-02-03EG-1E module is using xczu3eg-sfvc784-1-e Zynq

Ultrascale+ device and 1 GB DDR4 memory. It has four core Arm A53 processor, and
GPU graphic accelerator.

 STM32H753 with TE0820-03-04EV-1EA module is using xczu4ev-sfvc784-1-e Zynq

UltraScale+ device and 2 GB DDR4 memory. It has four core Arm A53 processor,
GPU graphic accelerator, integrated video codec HW IP core and ultra RAM memory
blocks in the programmable logic area.

General use of 8xSIMD FP03x8 accelerators

SW developer can program and use the two 8xSIMD FP03x8 HW accelerators without
SDSoC 2018.2 compiler license. The standard gcc C compiler or the g++ C++ compiler and
„make“ commands can be also used for cross-compilation on Win 10 PC or in the Debian OS
on the dual core Arm A53 1.2 GHz microprocessor of the Zynq Ultrascale+ device .

The two 8xSIMD FP03x8 accelerators and the HW data movers supporting data
communication are represented for the SW developer as shared C or C++ library with simple
SW API. The API is identical for several alternatives of HW data movers.

The evaluation package provides several pre-compiled HW designs represented in form of
SD-cards containing these designs and API interface for SW developer in form of shared
Debian libraries for Arm host processor.

The FP03x8 HW accelerators serve for run-time reprogrammable 8xSIMD single precision
floating point computations. The internal structure of FP03x8 accelerators is described in
Figure 5.

All designs present in this evaluation package contain two independent 8xSIMD FP03x8
accelerators in the programmable logic part of the device. See Figure 4.

The HW data movers supporting the data communication are represented for the SW
developer as shared C++ library with simple SW API. The API is identical for several
alternatives of HW data movers.

The evaluation package includes 8xSIMD FP03x8 accelerators with HW license enabling
only restricted number of operations. If these licensed operations are all used, user has to
reset complete system. This will enable to use the licensed count of operations again.

Please contact UTIA (kadlec@utia.cas.cz) if you are interested in licensing of 8xSIMD
accelerators HW IPs without this restriction.

P03x8 HW accelerator

mailto:kadlec@utia.cas.cz

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/37

Parameters of 8xSIMD FP03x8 accelerators (same for 03CG,03EG,04EV)

Interfaces

Type of interface: Clock:

 Data streaming I/O: AXI-S 32 bit 240 MHz

 Firmware program VLIW 128 bit 240 MHz

 Configuration I/O: AXI-lite 32 bit 100 MHz

 ARM A53 system clock 1200 MHz

Memory of the Accelerator in the programmable logic part of the device

 12 dual-ported 1024x64 bit BRAMs Blocks (0 .. 11) are used as:
o 24 Data RAMs organised as 1024x32 bit blocks: A1..A8, B1..B8 and Z1..Z8.

 2 dual-ported 512x64 bit BRAMs Blocks (12, 13) are used as
o 4 Program RAMs organised as 512x32 bit blocks: P1..P3

SIMD
A
32 bit

Block
64
bit

 SIMD
B
32 bit

Block
64
bit

 SIMD
Z
32 bit

Block
64 bit

 VLIW
Prog

Block
64 bit

A1 0 B1 4 Z1 8 P1 12

A2 B2 Z2 P2

A3 1 B3 5 Z3 9 P3 13

A4 B4 Z4 P4

A5 2 B5 6 Z5 10

A6 B6 Z6

A7 3 B7 7 Z7 11

A8 B8 Z8

Figure 6: Internal block rams of accelerators.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/37

AXI-lite Registers

Name: Data: Description:
reset 1 bit: “1” Reset AXI lite Registers; “0” NOP
we 16 bit: Write from stream to block(s) (bit 0 .. 13)
baddr 10 bit: Stream will rd/wr from addr=baddr
bram 5 bit: Read from Block 0 .. 13 to Stream; 16 for: Move-data-through
paddr 9 bit: Program start address
pstep 9 bit: Program stop address
go 1 bit: “1” go from paddr to pstep; “0” NOP
hi 12 bit: SubBank prog. mod: 00zz00bb00aa (bits)
done 8 bit: Read only. “0” => Instruction runs
pdone 1 bit: Read only. “0” => Program runs

Parameters of stream data interfaces from/to ARM DDR memory

 Maximal supported stream data size is 2048 x 32 bit

 Data streaming can have variable size:
o Min: 2 x 32 bit
o Max 2048 x 32 bit

 Mode of operation (same for Data and for Program):
o Write to a block: It is defined by we (from address defined in baddr)
o Broadcast Write: It is defined by setting more bits in we (from address defined in

baddr)
o Read from block: It is defined by setting bram (from address defined in baddr)
o Write or Broadcast Write and Read in parallel: It is defined by setting more bits

in we and by setting bram (from address defined in baddr)
o Send data through the Accelerator: It is defined by setting we = 0 and by

setting bram =16;

Design-time support

These data streaming HW data movers are supported:

 Zero Copy HW data mover without DMA

 DMA HW data mover with DMA

 SG DMA HW data mover with SG DMA and interrupts

The design time support is based on the Xilinx SDSoC 2018.2 system level compiler.

Run-time support

 Data can be written to and/or read from the accelerator by user Arm app.

 Firmware can be written to and/or read from the accelerator user Arm app.

 Computation & data streaming can be performed in parallel.

Versions of accelerators:

 FP03x8_capabilities capabilities = 10, 20, 30 or 40

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/37

Figure 7: Floating point functions present in all accelerators {10 or 20 or 30 or 40}.

Figure 8: Specific functions present only in some versions accelerators.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/37

3 Programming of 8xSIMD FP03x8 floating point accelerators

Host Arm A53 application can form the VLIW program instructions in DDR4 memory as two
64bit words. Components of the low 64 bit word are marked by light green background.

Components of the high 64 bit word components are marked by light blue. See Figure 9.

Host arm application can form a sequence of such VLIW program instructions in DDR4
memory and write them to one of two accelerator program memories.

Figure 9: Structure of the 128 bit wide VLIW program instruction.

Sequences of VLIW instructions present in the accelerator program memory can be
autonomously executed by the accelerator (see Figure 5).

User defines start address in paddr AXI-lite register and end address in pstep AXI-lite
register.

User requests execution of the sequence of VLIW operations by setting the single bit AXI-lite
register go = 1. The accelerator executes the VLIV sequence from paddr to pstep.

State of the execution can be tested by the host application by reading of the AXI Read only
register pdone. If pdone==0, the sequence of VLIW instructions is being executed.
If pdone==1, the sequence of VLIW instructions is completed.

Finally the host application has to set the single bit AXI-lite register back to go = 0.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/37

The host application can also copy data/program to/from the accelerator while the sequence
of VLIW instructions is being executed on current internal data and internal program of the
accelerator.

This parallel copy data/program to/from the accelerator (while accelerators executes its
sequence of VLIW instructions) requires to avoid race-condition caused by parallel writing to
the same memory address both by accelerator and by parallel copy of data defined by the
user in the same time instance. This has to be avoided by the user application, by writing
only to accelerator data which are not used for writing by the currently executed sequence of
VLIW instructions.

The sequence of VLIW instructions can be also reduced to a single VLIW instruction.
The paddr and pstep registers are set to an identical program address in such case.

The HW Sobel filter for edge detection is precompiled into the programmable logic and
present in the shared libraries together with the two serial connected accelerators.

The internal structure of the Zynq Ultrascale+ SoC with two serial connected accelerators
and HW accelerator for Sobel filter FP03x8 accelerator can be seen in Figure 5.

4 Evaluation of performance of Zynq Ultrascale+ accelerator

Released evaluation package includes SW projects for C (gcc) compiler and C++ (g++)
compiler.

C projects:

Directory: fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_c_sw\

 Comparison of A53 SW, 8xSIMD and SDSoC
SW project: ./matmultf0_c Matrix multiplications [64,64]
 (without copy of matrices to DDR4)
SW project: ./matmultf0_c_thread Matrix multiplication [64,64] use 2 SW threads
 (without copy of matrices to DDR4)
SW project: ./matmultf1_c Matrix multiplication [64,64]
 (with copy of matrices to DDR4)
SW project: ./matmultf1_c_thread Matrix multiplication [64,64] use 2 threads
 (with copy of matrices to DDR4)

 Test of vector 8xSIMD operations
SW project: ./va2bf0_c/ Vector copy from A[4096] to B[4096]
SW project: ./vadd0_c/ Vector ADD: Z[4096] = A[4096] .+ B[4096]
SW project: ./vadd0_c_az2b/ Vector ADD: B[4096] = A[4096] .+ Z[4096]
SW project: ./vadd0_c_bz2a/ Vector ADD: A[4096] = B[2096] .+ Z[4096]
SW project: ./vb2af0_c/ Vector copy from B[4096] to A[4096]
SW project: ./vdivf0_c/ Vector DIV: Z[4096] = A[4096]./B[4096]
SW project: ./vmacf0_c/ Vector MAC
SW project: ./vmsubacf0_c/ Vector MSUBAC
SW project: ./vmul0_c/ Vector MUL: Z[4096] = A[4096] .* B[4096]
SW project: ./vmul0_c_az2b/ Vector MUL: B[4096] = A[4096] .* Z[4096]
SW project: ./vmul0_c_bz2a/ Vector MUL: A[4096] = B[2096] .* Z[4096]
SW project: ./vprodf0_c/ Vector VPROD
SW project: ./vprods8f0_c/ Vector VPRODS8
SW project: ./vsub0_c/ Vector SUB: Z[4096] = A[4096] .- B[4096]

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/37

SW project: ./vsub0_c_az2b/ Vector SUB: B[4096] = A[4096] .- Z[4096]
SW project: ./vsub0_c_bz2a/ Vector SUB: A[4096] = B[2096] .- Z[4096]
SW project: ./vz2af0_c/ Vector copy from Z[4096] to A[4096]
SW project: ./vz2bf0_c/ Vector copy from Z[4096] to B[4096]

 Shared library

 Shared library: ./Debug/sd_card/ libfp03x8_v26x_2x1_zc_muladdf_c_hw.so
Shared library: ./Release/sd_card/ libfp03x8_v26x_2x1_zc_muladdf_c_hw.so

C++ projects:
Directory: fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_sw\

 Comparison of A53 SW, 8xSIMD and SDSoC
SW project: ./matmultf0 Matrix multiplications [64,64]
 (without copy of matrices to DDR4)
SW project: ./matmultf0_thread Matrix multiplication [64,64] use 2 SW threads
 (without copy of matrices to DDR4)
SW project: ./matmultf1 Matrix multiplication [64,64]
 (with copy of matrices to DDR4)
SW project: ./matmultf1_thread Matrix multiplication [64,64] use 2 threads
 (with copy of matrices to DDR4)

 Test of vector 8xSIMD operations
SW project: ./va2bf0/ Vector copy from A[4096] to B[4096]
SW project: ./vadd0/ Vector ADD: Z[4096] = A[4096] .+ B[4096]
SW project: ./vadd0_az2b/ Vector ADD: B[4096] = A[4096] .+ Z[4096]
SW project: ./vadd0_bz2a/ Vector ADD: A[4096] = B[2096] .+ Z[4096]
SW project: ./vb2af0/ Vector copy from B[4096] to A[4096]
SW project: ./vdivf0/ Vector DIV: Z[4096] = A[4096]./B[4096]
SW project: ./vmacf0/ Vector MAC
SW project: ./vmsubacf0/ Vector MSUBAC
SW project: ./vmul0/ Vector MUL: Z[4096] = A[4096] .* B[4096]
SW project: ./vmul0_az2b/ Vector MUL: B[4096] = A[4096] .* Z[4096]
SW project: ./vmul0_bz2a/ Vector MUL: A[4096] = B[2096] .* Z[4096]
SW project: ./vprodf0/ Vector VPROD
SW project: ./vprods8f0/ Vector VPRODS8
SW project: ./vsub0/ Vector SUB: Z[4096] = A[4096] .- B[4096]
SW project: ./vsub0_az2b/ Vector SUB: B[4096] = A[4096] .- Z[4096]
SW project: ./vsub0_bz2a/ Vector SUB: A[4096] = B[2096] .- Z[4096]
SW project: ./vz2af0/ Vector copy from Z[4096] to A[4096]
SW project: ./vz2bf0/ Vector copy from Z[4096] to B[4096]

 Shared library: ./Debug/sd_card/ libfp03x8_v26x_2x1_zc_muladdf_hw.so
Shared library: ./Release/sd_card/ libfp03x8_v26x_2x1_zc_muladdf_hw.so

Evaluation package contains SW projects and Debug and Release versions of shared
libraries for Debian Stretch 9.8 OS for the Zynq Ultrascale+ device for the SDK 2018.2 C SW
flow with gcc compiler and for C++ SW flow with g++ compiler. Libraries provide interfaces to
the programmable logic part of the device with 2 evaluation versions of 8xSIMD FP03x8 HW
accelerators with zero copy data movers and fixed SDSoC HV accelerator for floating point
Multiply and Add [16x16].

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/37

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/37

blocks

Figure 10: Console output from matrix multiplication: matmultf0.elf.

Listening (see Figure 10) indicates that the application is started from the directory /boot .
Path to the shared library has to be exported before tests. The test app is started by
executing ./matmultf0.elf SW application.

The test app. performs FP32 matrix multiplication of matrices with size [64x64] as:

 SW with standard scalar Arm A53 FPU unit.

 SW with Arm A53 SIMD NEON unit with SW composing the final [64x64] matrix
multiplication from fixed size [16x16] blocks.

 SDSoC HW accelerator of matrix multiply and matrix add [16x16] with SW support
composing the final [64x64] matrix multiplication from the fixed size [16x16] HW
accelerated blocks.

 Two 8xSIMD HW accelerators

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/37

FP32 performance of 03CG, 03EG and 04EV accelerators

Function MFLOP/s

Matrix Multiplication [64,64] 1 thread scalar FPU A53 SW: 280
Matrix Multiplication [64,64] 1 thread NEON A53 SW: 1435
MM (without copy of matrices to DDR4) 1 thread 2x 8xSIMD: 5232
MM (based on HW MultiplyAdd[16,16]) 1 thread SDSoC HW: 1134

Matrix Multiplication [64,64] 2 threads scalar FPU A53 SW: 845
Matrix Multiplication [64,64] 2 threads NEON A53 SW: 3736
MM (without copy of matrices to DDR4) 2 threads 2x 8xSIMD: 5077
MM (based on HW MultiplyAdd[16,16]) 1 thread SDSoC HW: 1127

Matrix Multiplication [64,64] 1 thread scalar FPU A53 SW: 284
Matrix Multiplication [64,64] 1 thread NEON A53 SW: 1435
MM (with copy of matrices to DDR4) 1 thread 2x 8xSIMD: 4046
MM (based on HW MultiplyAdd[16,16]) 1 thread SDSoC HW: 1135

Matrix multiplication [64,64] 2 thread scalar FPU A53 SW: 851
Matrix multiplication [64,64] 2 threads NEON A53 SW: 3690
MM (with copy of matrices to DDR4) 2 threads 2x 8xSIMD: 4122
MM (based on HW MultiplyAdd[16,16]) 1 thread SDSoC HW: 1127

Vector copy from A[4096] to B[4096] 2x 8xSIMD: 2944
 A53 SW: 448
Vector ADD: Z[4096] = A[4096] .+ B[4096] 2x 8xSIMD: 2942
 A53 SW: 207
Vector ADD: B[4096] = A[4096] .+ Z[4096] 2x 8xSIMD: 2942
 A53 SW: 200
Vector ADD: A[4096] = B[2096] .+ Z[4096] 2x 8xSIMD: 2940
 A53 SW: 199
Vector copy from B[4096] to A[4096] 2x 8xSIMD: 2943
 A53 SW: 407
Vector DIV: Z[4096] = A[4096]./B[4096] 2x 8xSIMD: 2589
 A53 SW: 156
Vector MAC 2x 8xSIMD: 293
 A53 SW: 390
Vector MSUBAC 2x 8xSIMD: 293
 A53 SW: 378
Vector MUL: Z[4096] = A[4096] .* B[4096] 2x 8xSIMD: 2940
 A53 SW: 192
Vector MUL: B[4096] = A[4096] .* Z[4096] 2x 8xSIMD: 2941
 A53 SW: 200
Vector MUL: A[4096] = B[2096] .* Z[4096] 2x 8xSIMD: 2940
 A53 SW: 193
Vector VPROD 2x 8xSIMD: 3260
 A53 SW: 553
Vector VPRODS8 2x 8xSIMD: 2507
 A53 SW: 628
Vector SUB: Z[4096] = A[4096] .- B[4096] 2x 8xSIMD: 2942

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/37

 A53 SW: 190
Vector SUB: B[4096] = A[4096] .- Z[4096] 2x 8xSIMD: 2940
 A53 SW: 211
Vector SUB: A[4096] = B[2096] .- Z[4096] 2x 8xSIMD: 2862
 A53 SW: 197
Vector copy from Z[4096] to A[4096] 2x 8xSIMD: 2940
 A53 SW: 379
Vector copy from Z[4096] to B[4096] 2x 8xSIMD: 2941
 A53 SW: 424

5 Power consumption

Power consumption is measured on input power line 5V.

Power consumption TE0820-03CG-1E 1GB module TE0706 carrier bd. Power [W]

Linux system is running with all HW. No user app. 7,20

Linux system is running with all HW 8xSIMD accelerated matmultf0.app 7,85

Power consumption TE0820-03EG-1E 1GB module TE0706 carrier bd. Power [W]

Linux system is running with all HW. No user app. 7.75

Linux system is running with all HW 8xSIMD accelerated matmultf0.app 9,20

Figure 11: Terminal is running A53 matmultf0 application. Control from remote desktop.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/37

Figure 12: Control of execution of A53 scilab by STM32H753 terminal joystick menu.

6 ILA – In-circuit Logic Analyzer

System includes HW IP of the Vivado-Lab tool 2018.2 ILA – In-circuit Logic Analyzer.

It is connected to HW 8xSIMD accelerators 0 and 1. ILA can be triggered by specific
instruction and displays addresses and we signals with 250 MHz clock. It is configured to
sample 1024 data. See Figure 13.
Figure 13 presents complete vz2a operation test. It is SW project vz2af0. It performs copy of
512 FP data from all Z memories of accelerators to all A memories. Copy is executed as
program sequence of two VLIW instructions, each performing copy of 256 FP data. This is
visible in Figure 13.

In ILA, we can zoom to see the details. See Figure 14. The we_op_1 == 1 and op_1 == 1 is
the trigger condition for ILA set by user. The we_op_1 can be seen in the first line of ILA.
The address bus related to Z z_addr_1 starts to increment, followed by address buss related
to A a_addr_1. The signal z_we_1 is set to 1 to write the data from A to Z in all 8xSIMD
memories in parallel.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/37

Figure 13: Instruction vz2a.

Figure 14: Instruction vz2a detail.

Figure 14 also demonstrates the relation of both observed accelerators. Both accelerators
compute the vz2a instructions with time shift of 7 clock cycles. This time shift is given by the
shifted start due to the sequential execution of ARM instructions activating the computation in
8xSIMD HW accelerators. We see that the accelerator with *_1 variables was started by
ARM program first.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/37

7 License

This evaluation package includes precompiled system with two evaluation versions of the
accelerator:

 FP03x8 with capabilities = 40 described in Figure 7 and Figure 8.

The license for the evaluation versions of accelerators enables execution of certain large
number of floating point operations before it expires. If this happens, the board has to be
switched off and switched on again to restart the evaluation license again.

The commercial version of accelerators is available in UTIA. UTIA offers this license on
commercial base. Contract with UTIA is required. For information about details of the
commercial license write to Jiri Kadlec kadlec@utia.cas.cz.

8 Conclusion

To test the SW application and integration of the eight 8xSIMD, FP03x8 accelerators, UTIA
provides for free download the evaluation package with precompiled evaluation version of
two 8xSIMD, FP03x8 accelerators in a bitstream. The evaluation package presents these
system properties:

The run-time reconfigurable floating point accelerators for the Zynq Ultrascale+ devices have
been designed and realized with respect to the following considerations and requirements:

1. Software utilizing the accelerator can be developed also directly on the embedded
system, using the C compiler (gcc) or C++ compiler (g++) present in the Debian
Stretch 9.8 operating system running on the Arm A53 device.

2. The entire HW platform with tho FP32x8 SIMD HW accelerators is provided in form of
a shared libraries. The provided shared libraries API are compatible with the standard
C (gcc compiler) and C++ (g++ compiler) SW design flows. Scripts are auto
generated for the ARM A53 Debian OS “make” utility.

3. The two FP32x8 SIMD HW hardware of floating point accelerators have fixed design.
Their run-time reconfiguration is performed by reprogramming the firmware code. The
firmware defines what sequences of operations will do the programmable finite state
machines (FSMs) inside of the accelerators.

4. Data communication is implemented by AXI-stream.
5. HW data movers are defined in design time and cannot be changed during the run

time. The following variants are possible:
a. Zero copy (ZC) HW data movers with C interface, (minimal HW resources)
b. Zero copy (ZC) HW data movers with C++ interface (minimal HW resources)
c. DMA data HW data movers with C++ interface
d. Combination of ZC HW (DDR to Accelerator) and SG DMA HW (Accelerator

to DDR) with interrupts and C++ interface.

The released evaluation package includes precompiled variants a) and b).

All communication alternatives work with identical SW API. It means that the user
host SW code for ARM A53 remains identical and does not need modifications for all
four alternatives of HW data movers.

6. SW API can query and identify which SIMD FP operations are supported by each HW
accelerator. Based on this information, the software can be reconfigured to take the
advantage of supported operations.

mailto:kadlec@utia.cas.cz

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/37

7. SW API can query and identify information about the actual status of the HW license
defined in each 8xSIMD HW accelerator.

8. The HW accelerator scheduler executing the sequence of VLIW operation is very
simple. It can execute only a linear sequence of VLIW vector instructions. It does not
support for-loops, if-else, and similar constructs. There is also no support for checking

for the overflow/underflow or NaN in performed floating point operations. All these
program control constructs have to be implemented in the host SW code running on
the ARM A53 processor.

9. Computations performed in HW accelerators can overlap with stream-based data
communications. This is controlled by the user host software running on the ARM A53
processor, usually in several parallel executed threads.

10. Data are stored as 64 bit words. This arrangement enables potential future use the
Ultra RAM blocks (4096x64b) present in Zynq UltraScale+ device ZU04EV without
affecting the accelerator library API or user code. The released evaluation package is
not using Ultra RAM blocks.

Reconfiguration of accelerator by change of firmware

The 8xSIMD FP32x8 HW accelerators execute sequences of VLIW vector instructions
(firmware) stored in accelerator program memory. This firmware can be first defined in the
Arm host software and then downloaded via the streaming interface to the accelerator. The
program memory of each 8xSIMD HW accelerator can contain multiple pre-loaded
sequences of VLIW instructions.

Computation performed in the 8xSIMD HW accelerators can overlap with stream-based data
communication. This is controlled by the Arm host software and it can be used for run-time
reconfiguration by loading a new VLIW instruction sequence to the accelerator program
memory while computation is in progress.

SW flexibility and performance of SDSoC accelerators

The precompiled fixed FP32 matrix multiplication and matrix add HW accelerator can work
only with the [16x16] block. In case of larger size matrix multiplication with size in multiples of
16 the fixed block can be reused by the SW application.

SW flexibility and performance of Arm A53 NEON accelerator

Presented FP32 matrix multiplication on Arm A53 NEON accelerator was also defined and
tested only for fixed [16x16] block. The C and C++ compilers with –o3 optimization can map
the FP32 matrix multiplication computation to the NEON accelerator in this case. In case of
larger size matrix multiplication with size in multiples of 16 the fixed block can be reused by
the SW application.

Released evaluation package presents also use of two A53 NEON accelerators in case of
FP32 matrix multiplication on two SW threads.

Comparison of effectivity of used HW resources

The multiplication part of the fixed SDSoC HW accelerator is using 16 FP32 ADD HW IP
cores and 16 FP32 MULT HW IP cores. The two 8xSIMD HW accelerators are together also
using 16 FP32 ADD HW IP cores and 16 FP32 MULT HW IP cores. Demonstrated
performance of the two 8xSIMD HW accelerators significantly outperforms the fixed SDSoC
HW accelerator.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/37

9 References

[1] WAKeMeUp, Wafers for Automotive and other Key applications using Memories,
embedded in Ulsi Processors. Project number ECSEL No. 783176
http://www.wakemeup-ecsel.eu/

[2] UM2407 User manual STM32H7 Nucleo-144 boards (MB1364)
file:///C:/Users/kadlec/STM32Cube/Repository/UM2407.pdf

[3] Adafruit, „1.8" TFT Display Breakout and Shield,“ 10 02 2019. [Online]. Available:
https://cdn-learn.adafruit.com/downloads/pdf/1-8-tft-display.pdf?timestamp=1558009255

[4] MPSoC Module with Xilinx Zynq UltraScale+ ZU3CG-1E
https://shop.trenz-electronic.de/en/TE0820-04-3AE21FA-MPSoC-Module-with-Xilinx-Zynq-
UltraScale-ZU3CG-1E-2-GByte-DDR4-SDRAM-4-x-5-cm

[5] MPSoC Module with Xilinx Zynq UltraScale+ ZU3EG-1E
https://shop.trenz-electronic.de/en/TE0820-04-3BE21FA-MPSoC-Module-with-Xilinx-Zynq-
UltraScale-ZU3EG-1E-2-GByte-DDR4-SDRAM-4-x-5-cm

[6] MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E
https://shop.trenz-electronic.de/en/TE0820-04-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-
UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm

[7] Trenz Electronic, “Carrier Board for Trenz Electronic 7 Series”.
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-
Series?c=261

[8] scilab (5.5.2-4+deb9u1). Scientific software package for numerical computations.
https://packages.debian.org/stretch/scilab

[9] Jiři Kadlec, Lukáš Kohout: INDUSTRIAL 40 NM DEMONSTRATOR NUCLEO
STM32H755ZI-Q
http://sp.utia.cz/index.php?ids=results&id=H755ZI-Q

[10] UM2408 User manual STM32H7 Nucleo-144 boards (MB1363)
file:///C:/Users/kadlec/STM32Cube/Repository/UM2408.pdf

[11] SW4STM32 System Workbench for STM32: free IDE on Windows, Linux and OS X
SW4STM32 - System Workbench for STM32: free IDE on Windows, Linux and OS X -
STMicroelectronics

[12] STM32CubeH7 Firmware Package V1.5.0 / 28-June-2019
Avalable for download by STM32CubeMX - STM32Cube initialization code generator.
https://www.st.com/en/development-tools/stm32cubemx.html

https://www.wakemeup-ecsel.eu/
file:///C:/Users/kadlec/STM32Cube/Repository/UM2407.pdf
https://cdn-learn.adafruit.com/downloads/pdf/1-8-tft-display.pdf?timestamp=1558009255
https://shop.trenz-electronic.de/en/TE0820-04-3BE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU3EG-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-04-3BE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU3EG-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-04-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-04-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://packages.debian.org/stretch/scilab
https://sp.utia.cz/index.php?ids=results&id=H755ZI-Q
file:///C:/Users/kadlec/STM32Cube/Repository/UM2408.pdf
https://www.st.com/en/development-tools/sw4stm32.html
https://www.st.com/en/development-tools/sw4stm32.html
https://www.st.com/en/development-tools/stm32cubemx.html

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/37

APPENDIX - Confidence test

This is basic confidence test of the evaluation package for Zynq Ultrascale+ on ZU03CG
module.

Unzip evaluation package to Win 10 directory of your choice.
c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\

Precompiled HW and SW projects are located in directory:
c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_s

w\

Sd_card image is located in directory:
c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release_sdcard\

INSTALLATION OF TOOLS

 Install Xilinx SDK 2018.2 on Win 10 PC 64 bit.

 Install Xilinx Lab Tools 2018.2 on Win 10 PC 64 bit.

 Install Win32DiskImager for writing of image to 16 GB SD card, Class (10).

 Install Putty (for USB based serial console and Ethernet based serial console).

 Unzip Arm Debian disk image on PC and use Win32DiskImager to write the disk
image from the PC to the SD card.

HW SETUP

 Insert the SD with disk image card to the Zynq Ultrascale+ board.

 Connect PC and Zynq Ultrascale+ to Ethernet.

 Connect USB serial terminal cable to Zynq Ultrascale+ and to PC.

 Connect system to the 5V/6A power supply.
TEST

 Zynq Ultrascale+ will start to boot the Debian OS.

 Open Putty terminal. Set it to:
(115200 bps, 8 data bits, stop bit 1, parity none, flow control off)

 Use Putty terminal to login as user: root password: root

 Change directory to /boot

 To export path to the shared library, type in Debian terminal:
export LD_LIBRARY_PATH=/boot

 Start application code by typing:
./ matmultf0.elf

RESULT

 The application will compute single precision floating point matrix multiplications
o In SW on ARM A53 with sequential FPU
o In SW on ARM A53 on SIMD NEON FPU
o In SDSoC HW accelerator supporting the [16x16] matrix mult and matrix add

tiles.
o In HW on two 8xSIMD FP03x8 accelerators.

 Results of ARM and HW accelerated computations are compared to be identical and
MFLOP/s performance is displayed. See Figure 10.

Compilation and debug of projects from source code

The evaluation package includes SW projects for Xilinx SDK 2018.2 tool running on Win10.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/37

These projects can be modified and recompiled for ARM and executed on Zynq Ultrascale+
with or without debugging support. Open Xilinx SDK 2018.2 tool, in working directory:

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_s

w\

Projects in this directory link to the same shared library:

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_s

w\Release\sd_card\

Each project has two configurations:

 Debug for debugging with –O0 flag with debug information symbols included.

 Release for maximal performance with -O3 flag and without debug symbols.

You can modify and re-compile the SW code in the Xilinx SDK 2018.2 tool on Win 10 PC.

DEBUG of SW application from Xilinx SDK 2018.2

The application can be executed or debugged from the SDK 2018.2 tool.

SDK debugger needs environment information about the location of the actual shared library
on the board. For example:

 Figure 15: Define the environment variable.

Before start of Debug, copy content of this directory to the sd_card directory

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_s

w\Debug\sd_card*.*

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/37

to SD card top directory (visible in the Win 10 file explorer).
.

Enter the SD card to the board and power ON the board.

Alternatively, you can use Ethernet to perform binary copy to the SD card.
If you use Ethernet, you have to type

reboot

to reboot the board with correct bitstream loaded to the programmable logic part of the Zynq
Ultrascale+.

To debug from the PC in the Xilinx SDK debugger GUI, the Zynq Ultrascale+ TCF server has
to be accessible from the PC via Ethernet. This can be tested. See Figure 16.

Figure 16: Test connection to Linux TCF Agent.

Compile SW application directly on the Zynq Ultrascale+ board

Xilinx SDK 2018.2 tool creates files for the make utility, which can be used for compilation of

SW application directly on the board with use of the gcc C compiler or the g++ C++ compiler

of the Arm Debian OS.

You can copy complete SDK 2018.2 project to the Debian file system and compile on board
by copy complete content of the C or C++ directory with SDK projects. Example of C++:

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uar

t1_ila_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_s

w\ matmultf0\

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/37

to the Debian file system into directory:

/home/fp03x8_v26_2x1_uart1_ila/fp03x8_v26x_2x1_zc_muladdf_sw/
matmultf0/

To compile in Arm Debian the matmultf0 project, change the directory to:

cd /home/fp03x8_v26_2x1_uart1_ila/fp03x8_v26x_2x1_zc_muladdf_sw/

matmultf0/Debug

and export the relative path to the Debug version of the shared library by typing in Debian
console:

export LD_DATA_PATH=../../Debug/sd_card

In Debian terminal, clean and then recompile the project by typing:

make clean

make

Finally, execute the re-compiled C++ debug version of the application compiled by Arm
Debian g++ compiler by typing in the Debian console:

./matmultf0.elf

You are done. See the application running on the board. See Figure 10.

To close the Debian OS, type in the Debian terminal:

halt

This will close all open files on the SD file system and halt the ARM system.

 Remove the SD card.

You can modify the SD card in PC and continue with other tests.

To power down, take these steps.

 Close PuTTY terminal and disconnect USB connection to PC.

 Remove the power supply of the board.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

28/37

Use of C MEX functions in Scilab

In Debian terminal, change directory to

/home/mflop/test_51d

Start Scilab by typing

scilab

In Scilab, execute script

top_51d.sce

This script is controlled from STM32H753 terminal GUI. It will execute mex_md51() C MEX

function present in shared library libmex_md51.so and generate several reference header

files for STM32H7 benchmarks in the current directory and measures the double precision
MFLOP performance of mex_md51() C MEX function on ARM A53.

Quit Scilab by typing.

quit

Use same process to use all other reference MEX C functions.

See execution of the top_51d.sce script in Scilab on remote X11 Desktop in

Figure 12.

10 APPENDIX – System design guidelines

Design flow requires the 8xSIMD HW IP core as input. Contact UTIA to get license for use of
this IP.

Contact UTIA to buy the required 8xSIMD HW accelerator IP:
Name of the IP: fp03x8_v26_v40
ID: 7
Device: xczu3cg-sfvc784-1-e
Tool chain: Vivado/SDSoC 2018.2
Contact: UTIA AV CR v.v.i.; Pod Vodarensnou vezi 4, 18208 Prague 8,

Czech Republic;
Jiri Kadlec; email: kadlec@utia.cas.cz tel: +420 2 6605 2216

The fp03x8_v26_v40 IP is not included in the evaluation package in required HDL source
code. The compiled evaluation version of the fp03x8_v26_v40 IP is present in the BOOT.BIN

files in sd_card directories of the evaluation package.

The evaluation package can be downloaded from UTIA for free from www server
http://sp.utia.cz/index.php?ids=projects/wakemeup

mailto:kadlec@utia.cas.cz
https://sp.utia.cz/index.php?ids=projects/wakemeup

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

29/37

Guide for compilation of HW

1. Unpack evaluation package to Win10 directory. TERMINAL tool is in:
c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\

Change directory to:

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\fp03x8_v26_2x1_uart1_ila\zu

sys\

2. Add the UTIA 8xSIMD HW IP to the package as the directory \ip

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\fp03x8_v26_2x1_uart1_ila\zu

sys\ip_lib\ip

3. On Win10, open dos terminal window, change directory to the folder

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\fp03x8_v26_2x1_uart1_ila\zu

sys\

4. To overcome limitations of Win10 related to the need of short directory paths, use the
script _use_virtual_drive.cmd to create a virtual short path to your directory drive
X:\zusys Type command:

_use_virtual_drive.cmd

Select X as name of the virtual drive and select 0 to create the virtual drive.

Go to the created virtual short-path directory by typing in the win 10 terminal:

X:

cd zusys

5. Use text editor of your choice and open and modify script design_basic_settings.sh
Select correct path to SDSoC 2018.2 tool installed on your Win7 or Win10. Line 38:

@set XILDIR=C:/Xilinx

Select proper Xilinx device:

@set PARTNUMBER=7

The selected number corresponds to the number defined in file
X:\zusys\board_files\TE0820_board_files.csv

Verify, if line 78 of script design_basic_settings.sh sets the SDSoC flow support by:
ENABLE_SDSOC=1

@set ENABLE_SDSOC=1

6. Start the Xilinx Vivado 2018.2 and create the design by executing of script:

X:\zusys\vivado_create_project_guimode.cmd

7. Optional:
You can use Vivado automation and to the created HW design the In circuit Logic
Analysator (ILA) monitor to enable capturing of selected accelerator outputs of your
choice.

8. In Vivado console, execute command:

TE::hw_build_design -export_prebuilt

After the Vivado compilation, new hardware description file zusys.hdf is generated in

folder:

X:\zusys\prebuilt\hardware\3cg_1e_1gb\

Guide for configuration and compilation of PetaLinux

The configuration and compilation of the Petalinux 2018.2 kernel and Debian 9.8 Stretch

image for the Zynq Ultrascale+ module TE0820-03-03CG-1E with Zynq Ultrascale+ device

xczu3cg-sfvc784-1-e device is described now. The configuration has to be performed in the
Ubuntu 16.04 LTS OS.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

30/37

We describe use of the Ubuntu 16.04 LTS in the VMware Workstation Player in Win10. The

Petalinux 2018.2 distribution can be downloaded to the Ubuntu 16.04 LTS from

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedde
d-design-tools/2018-2.html

and installed to the default Ubuntu directory:

/opt/petalinux/petalinux-v2018.2-final

The standard PetaLinux 2018.2 distribution requires few modifications.

1. Copy content of these Win 10 directories:

X:\zusys\prebuilt

X:\zusys\os

to Ubuntu directories:

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/prebuilt/

2. In Ubuntu, open terminal window and set path to the PetaLinux 2018.2:

source /opt/petalinux/petalinux-v2018.2-final/settings.sh

3. Go to the directory copied from the evaluation package with pre-defined configuration
for the Zynq Ultrascale+ module TE0820-03-03CG-1E:

cd

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/

It contains a predefined configuration according to Zynq Ultrascale+ board
requirements.

4. The zusys.hdf file created in Win 10 in Vivado 2018.2 tool is present in the Ubuntu
folder:

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/prebuilt/hardware/3cg_1e_1gb/

5. Use the zusys.hdf file as input for the PetaLinux configuration by (on single line)

petalinux-config --get-hw-description=

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/prebuilt/hardware/3cg_1e_1gb/

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

31/37

6. Verify if the PetaLinux filesystem location is changed from the ramdisk to the extra
partition on the SD card, select:

Image Packaging Configuration --->

 Root filesystem type (SD card) --->

7. Verrify if option to generate boot args automatically is disabled and if user defined
arguments are set to:

earlycon clk_ignore_unused root=/dev/mmcblk0p2 rootfstype=ext4 rw

rootwait quiet

Leave the configuration, 3x Exit and Yes.

8. Build PetaLinux, from the bash terminal execute

petalinux-build

9. Files image.ub, u-boot.elf and bl31.elf are created in:

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/image.ub

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/bl31.elf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

32/37

Guide for configuration and compilation of Debian OS

The file system is based on the Debian 9.8 Stretch distribution. Follow the steps below.

10. Go to the folder with PetaLinux:

cd

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/

11. The 64bit Debian image will be created by execution of the mkdebian.sh script. The

script checks all the tools that are needed to create the image, most of them are a
standard part of the Ubuntu 16.04 LTS distribution.

When some of them are missing, install them by:

sudo apt install Package

Table 1: tools with a corresponding package name.

Tool Package

dd coreutils

losetup mount

parted parted

lsblk util-linux

mkfs.vfat dosfstools

mkfs.ext4 e2fsprogs

debootstrap debootstrap

gzip gzip

cpio cpio

chroot coreutils

apt-get apt

dpkg-reconfigure debconf

sed sed

locale-gen locales

update-locale locales

qemu-arm-static qemu-user-static

12. Create the Debian image. It will consist of two partitions.

The file system of the first one will be FAT32. This partition is dedicated for image of
the PetaLinux kernel. The second partition will contain the Debian using EXT4 file
system. Create the Debian image from the external Ethernet repositories by this
command:

chmod ugo+x mkdebian.sh

sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language. Choose English
(US). The resultant image file will be called TE0820-debian.img, its size will be 7 GB.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

33/37

13. Compress the created image to file TE0820-debian.zip:

zip TE0820-debian TE0820-debian.img

14. Copy compressed image file from Ubuntu

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/te0820-debian.zip

to Win 10 file:

X:\zusys\prebuilt\os\petalinux\default\te0820-debian.zip

15. Copy these files from Ubuntu

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/image.ub

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/images/linux/bl31.elf

to Win 10 files:

X:\zusys\prebuilt\os\petalinux\default\image.ub

X:\zusys\prebuilt\os\petalinux\default\u-boot.elf

X:\zusys\prebuilt\os\petalinux\default\bl31.elf

16. In Ubuntu, clean Petalinux project files

petalinux-build -x mrproper

17. In Ubuntu, delete files

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/TE0820-debian.zip

/home/devel/work/TS82fp03x8_TE0706_TERMINAL_zu3cg/fp03x8_v26_2x1_uart1_il

a/zusys/os/petalinux/TE0820-debian.img

18. In Ubuntu, close all applications and shut down Linux.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

34/37

19. In Win 10, close the VMware Workstation Player.

You can continue with preparation of the Zynq Ultrascale+ board with created files:

 Petalinux kernel image image.ub

 Compressed Debian image TE0820-debian.zip

 U-boot program u-boot.elf

 Support firmware bl31.elf

This ends the configuration and compilation steps for the Petalinux and Debian.

Guide for creation of SDSoC platform OS

20. In the open Vivado 2018.2 console, create and compile the initial BOOT.bin file and

the initial SW modules by execution of the command:

TE::sw_run_hsi

The resulting BOOT.bin file will be located in the folder

X:\zusys\prebuilt\boot_images\3cg_1e_1gb\u-boot\BOOT.bin

21. In Vivado 2018.2 console, create the SDSoC platform by execution of the command:

TE::ADV::beta_util_sdsoc_project

The SDSoC 2018.2 platform is generated in to the directory

X:\SDSoC_PFM\TE0820-02\03CG-1E\
and it is also packed into the ZIP file.

Guide for creation of shared library and HW kernel

22. On Win10, in the open dos terminal window, cancel the current virtual drive X: by
executing from the command line

_use_virtual_drive.cmd

and response (1)

23. Change directory to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a\SDSoC_PFM\TE0820-02\03CG-1E\

24. In Win10, open dos terminal window and use the copy of the script
_use_virtual_drive.cmd to create a new virtual short path to get short SDSoC
directory X:\ 03CG-1E

_use_virtual_drive.cmd

Select X as name of the virtual drive and select (0) to create the virtual drive.
Go to the created virtual short-path directory by:

X:

cd 03CG-1E

25. Open SDSoC project in directory

X:\03CG-1E

26. In SDSoC import one C and one C++ HW kernel design project

fp03x8_v26x_2x1_zc_muladdf_c_hw

fp03x8_v26x_2x1_zc_muladdf_hw

from the directory

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a\SDSoC_PFM_src\TE0820-02\03CG-1E\

27. Define the custom SDSoC platform

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

35/37

X:\03CG-1E\zusys

28. Change both imported projects from Debug to the Release compilation target

29. Compile both projects by the Xilinx SDSoC 2018.2 compiler.
Compilation time is cca 3 hours (in case of Win10 I7 laptop with 16 GB memory).

30. Result of compilation is the SD card content with BOOT.bin file shared object library
definition files in directories:

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_c_hw\Release\sd_card\

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_hw\Release\sd_card\

31. Copy content of the C project directory

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_c_hw\Release\sd_card\

to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_c_sw\Debug\

and also to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_c_sw\Releas

e\

Optional:

Copy ILA nets definition files debug_nets.ltx and zsys_wrapper.ltx from the
directory

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_c_hw\Release\

_sds\p0\vivado\prj\prj.runs\impl_1\

to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_c_sw\Debug\

and also to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_c_sw\Releas

e\

32. Copy content of the C++ project directory

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_hw\Release\sd_card\

to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_sw\Debug\

and also to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_sw\Release\

Optional:

Copy ILA nets definition files debug_nets.ltx and zsys_wrapper.ltx from the
directory

X:\03CG-1E\fp03x8_v26x_2x1_zc_muladdf_hw\Release\

_sds\p0\vivado\prj\prj.runs\impl_1\

to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_sw\Debug\

and also to

c:\home\work\TS82fp03x8_TE0706_TERMINAL_zu3cg\zu3cg_deb_2x1_eval_uart1_il

a_release\fp03x8_v26_2x1_uart1_ila\fp03x8_v26x_2x1_zc_muladdf_sw\Release\

33. Clean both projects.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

36/37

34. Close SDSoC tool.

Guide for retargeting for Zynq Ultrascale+ device/module

The above described design flow has been configured for Trenz Electronic module with ID=7,
module TE0820-02-03CG-1E, part xczu3cg-sfvc784-1-e, memory 1GB with short module
name 3cg_1e_1gb.

The evaluation package includes also pre-configured scripts and files for Trenz Electronic
module with ID=5, module TE0820-02-03EG-1E, part xczu3eg-sfvc784-1-e, memory 1GB
with short module name 3eg_1e_1gb.

The evaluation package includes also pre-configured scripts and files for Trenz Electronic
module with ID=15, module TE0820-03-04EV-1EA, part xczu4ev-sfvc784-1-e, memory 2GB
with short module name 4ev_1e_2gb.

These three sets of preconfigured design scripts can be modified to target another Trenz
Electronic module. See list of Trenz Electronic modules in Chapter 2 of this application note.

After the change of the ID of the module, the design flow requires also the corresponding
version of the 8xSIMD HW IP core.

Contact UTIA to get license for the required HW IP version for the selected module ID.

Contact UTIA to buy the required 8xSIMD HW accelerator IP:
Name of the IP: fp03x8_v26_v40
ID: Select ID
Device: Select partname
Tool chain: Vivado/SDSoC 2018.2
Contact: UTIA AV CR, v.v.i.

Pod Vodarenskou vezi 4
18200 Prague 8
Czech Republic
Jiri Kadlec
email: kadlec@utia.cas.cz
tel: +420 2 6605 2216

Perform all design steps as described in this application mote for the TE0820-02-03CG-1E
module for the targeted module.

mailto:kadlec@utia.cas.cz

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

37/37

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR,
v.v.i., and to the maximum extent permitted by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and

(2) UTIA AV CR, v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR, v.v.i. had been
advised of the possibility of the same.

Critical Applications:
UTIA AV CR, v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR, v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

