
Matlab HSLA Toolbox version 3.0
32- and 19-bit TWIN LNS ALU

Jiřı́ Kadlec1

Milan Tichý
Zdeněk Pohl

Antonı́n Heřmánek
Miroslav Lı́čko

Rudolf Matoušek
Jan Schier

May 29, 2002

1Department of Signal Processing, Institute of Information Theory and Automation, Pod
vodárenskou věžı́ 4, 182 08 Prague, Czech Republic, e-mail: kadlec@utia.cas.cz, tel.: +420-2-
66052216

Contents

Preface v
The Structure of the Document . v

I Matlab HSLA Toolbox 1

1 The Installation of the HSLA Toolbox 2
1.1 The Contents of the HSLA Toolbox 2
1.2 Building Matlab MEX libraries . 2

2 Data Representation for the LNS Arithmetics 3
2.1 Data Format, Range, and Precision 3
2.2 The LNS Operations . 3
2.3 Standard and Extended Precision Arithmetics 4

3 The C Level Functions 6
3.1 Standard Precision Functions . 6

3.1.1 The Function int2log () . 6
3.1.2 The Function log2int () . 7
3.1.3 The Function logadd () . 9
3.1.4 The Function logdiv () . 9
3.1.5 The Function logmul () . 9
3.1.6 The Function logsqrt () . 9
3.1.7 The Function logsub () . 10
3.1.8 Conversion Functions double2log () and log2double () 10

3.2 Extended Precision Functions . 11
3.2.1 The Function logdive () . 11
3.2.2 The Function logdnore () . 12
3.2.3 The Function logmule () . 12
3.2.4 The Function logsqrte () . 12

3.3 Interfaces for Double Precision Variables 13

4 Matlab HSLA Toolbox MEX Functions 15
4.1 Standard Precision Functions . 15

4.1.1 The Function i2log () . 15
4.1.2 The Function log2i () . 16
4.1.3 The Function ladd () . 16
4.1.4 The Function ldiv () . 17
4.1.5 The Function lmul () . 17
4.1.6 The Function lsub () . 18
4.1.7 The Function lsqrt () . 18
4.1.8 Conversion Functions d2log () and log2d () 18

4.2 Extended Precision Functions . 19
4.2.1 The Function ldive () . 19
4.2.2 The Function ldnore () . 20
4.2.3 The Function lmule () . 20
4.2.4 The Function lsqrte () . 20

ii

II 32- and 19-bit TWIN LNS ALU 23

5 The Installation of the LNS ALU 24
5.1 The Contents of the LNS ALU . 24
5.2 LNS ALU Examples Settings . 24

6 The LNS ALU and Celoxica DK1 Targets 26
6.1 LNS ALU Operations . 26
6.2 LNS ALU Functions . 26
6.3 Celoxica DK1 Targets . 27

7 LNS ALU Header Files 28
7.1 The Header File laluTWIN.h . 28
7.2 The Header File connect.h . 29
7.3 The Header File conv.h . 29
7.4 The Header File ram.h . 30

8 The LNS ALU Examples 31
8.1 The Example alutest . 32
8.2 The Example vadd01 . 32
8.3 The Example vadd02 . 32
8.4 The Example i2ll2i . 32
8.5 The Example vaddsp . 33

9 Future Work 34

iii

List of Figures

1 The 32- and 19-bit LNS data format 3
2 LNS sum and difference functions 4

List of Tables

1 Reserved values and statuses for the 32- and 19-bit precision LNS . . 4
2 Integer domain number representation for 32- and 19-bit HSLA . . . 7
3 Double interfaces and the corresponding LNS functions 13
4 TWIN LNS ALU functions . 26

iv

Preface

The complexity of the standard IEEE floating point implementation negatively affects
the use of advanced DSP and control algorithms in FPGA applications. A perspective
solution is the Logarithmic Number System (LNS) which is well suited for the FPGA
environment. The High Speed Logarithmic Arithmetic (HSLA) represents an attempt to
implement the LNS in the FPGA technologies. All the basic operations of logarithmic
arithmetic in the HSLA are implemented both with the covered data range and the
precision equal to or better than the standard IEEE 32-bit floating point used in new
DSP’s.

This report describes the Matlab HSLA Toolbox and the Logarithmic Arithmetic
Unit (LNS ALU) operating in the 32- or 19-bit precision environment. The toolbox
consists of a set of C libraries and a set of Matlab mex functions. The C libraries enable
users to develop their own applications. The mex functions provide basic arithmetic
operations, i.e. addition, subtraction, multiplication, division, and square-root. All
Matlab functions work with scalars, some of them can also operate on matrices. Two
versions (32- and 19-bit precision) of LNS arithmetics are provided. All functions
perform operations bit-exact to hardware level unless otherwise specified.

The Structure of the Document

This document is intended for a user who plans to use the HSLA libraries to write his
own C applications or a user whose intention is to use the HSLA toolbox in the Matlab
environment. The first part of document provides description of the HSLA Toolbox.
The second one discusses basic aspects of the LNS ALU hardware implementation.

First, in the Chapter 1, the installation is briefly described and the notes on building
the executable binary DLL’s for Matlab and environment requirements are given.

In the Chapter 2, binary representation of logarithmic numbers and 19-bit and 32-
bit format specifications are described. The HSLA toolbox supports standard and ex-
tended precision LNS arithmetics. These features are discussed in this chapter too.

Next, in the Chapter 3, the description of the functions contained in the C library
is provided. The chapter is divided into two sections, the first one describing the func-
tions operating on the standard precision LNS numbers (Section 3.1) the latter giving
the description of functions operating on the extended precision LNS numbers (Sec-
tion 3.2) mapped in the range 〈−1; 1〉. The functions are sorted alphabetically in both
sections.

The Matlab environment is very popular in the community of scientists. The mex
functions are used to interface the C functions contained in the HSLA libraries in order
to provide a comfortable way of using the LNS functions in Matlab. These functions
are described in the Chapter 4 and also alphabetically sorted.

The Chapter 5 provides the notes on the LNS ALU installation. It describes the
contents of the package and the environment settings required for LNS ALU examples.

The next Chapter 6 discusses provided LNS ALU operations, its use, and the Celox-
ica DK1 targets that can be used for compiling the design using ALU.

In the Chapter 7 the implementation details of the LNS ALU modules are discussed.
The module interfaces of the LNS ALU are provided in the header files described here.

In the Chapter 8 illustrative examples of using the LNS ALU are given. The de-
scription of DK1 Handel-C examples and other subsidiary files is provided.

In the last Chapter 9 the main features that should be included in the future versions
of the HSLA toolbox are presented.

v

vi

Part I

Matlab HSLA Toolbox

2 1 THE INSTALLATION OF THE HSLA TOOLBOX

1 The Installation of the HSLA Toolbox

1.1 The Contents of the HSLA Toolbox

This chapter gives you a brief information on the contents of the HSLA toolbox direc-
tory. After unpacking the lnsalu package you will find the following directory structure
in the libhsla/ directory:

include/ ANSI C header files for 32- and 19-bit versions
lib/ C static libraries for 32- and 19-bit versions
mex/ Matlab mex source files
runlib/ runtime Matlab mex libraries (DLL) for 32- and 19-bit versions

The HSLA library has been designed to provide support for developing standalone
C applications using the LNS arithmetics. The C header file hsla LNS.h provides
programming interface to the applications. It can be found in the include/ direc-
tory. This directory contains also header files defs32 LNS.h and defs19 LNS.h.
They should not be used separately because they are included in the basic header file
hsla LNS.h in connection with the 32- or 19-bit precision LNS arithmetics. To se-
lect the 32- or 19-bit precision arithmetics the macro (#define) LOGPREC is used.
It must be either set to the value 32 or 19 respectively in the source code before the
point where the hsla LNS.h header file is included or this macro definition has to be
provided as the C compiler parameter.

The C static libraries hsla 32.lib for the 32-bit version and hsla 19.lib
for the 19-bit version of the HSLA toolbox can be found in the lib/ directory. The
appropriate library has to be linked into your application to access the LNS functions.

The directory mex/ contains the source code files of the Matlab mex libraries.
Users can customize these source files but it is highly recommended to save the backup
copies of them to preserve the correct set of Matlab mex libraries.

The directory runlib contains two subdirectories 32bit and 19bit where the
appropriate Matlab DLL’s are stored after they have been built.

1.2 Building Matlab MEX libraries

The Matlab mex libraries has been pre-built and tested using the Microsoft Visual
C/C++ Version 6.0 (MSVC) and the Matlab Version 6.1 Release 12.1. The user can
use the MSVC and the Matlab mex script to rebuild libraries. The DOS batch file
make.bat should be used for this purpose.

It is supposed that the DOS environment is correctly set. Ensure that you have set
enough space for environment variables, correct PATH and other variables required by
the C compiler, and that you have set PATH variable to access mex (Matlab) executa-
bles.

To access HSLA functions directly from the Matlab command line or from your
Matlab scripts, set the correct PATH variable in your Matlab environment using the
following command from the Matlab command line:

addpath <HSLA_PACKAGE>/runlib/32bit;

or

addpath <HSLA_PACKAGE>/runlib/19bit;

where <HSLA_PACKAGE> specifies the location of the libhsla/ directory in your
directory tree.

3

2 Data Representation for the LNS Arithmetics

2.1 Data Format, Range, and Precision

The LNS data representation consists of a MSB1 sign bit (denoted by s in Fig. 1) and
the two’s complement fixed point value equal to log2|x|, where x is the value to be
represented and |·| is the absolute value operator. The signed two’s complement fixed
point number is divided to an integer part, which is always 8-bit long, and to a fraction
part (its size depends on the data precision). Binary data representations of the 32- and
19-bit precision LNS number format are depicted in Fig. 1.

s int. part fraction

fractionint. parts

0

09101718

31 23 2230
32−bit LNS format

19−bit LNS format

Figure 1: The 32- and 19-bit LNS data format

The standard IEEE single precision floating point (FLP) representation uses a sign
bit, 8-bit biased exponent, and 23-bit mantissa. This format holds signed values in the
range 1.2× 10−38 to 3.4× 1038.

In the equivalent 32-bit precision LNS representation, the integer and fractional
parts are kept as coherent two’s complement fixed-point value in the range −128 to
≈ 128. The real numbers represented are signed and in the range ≈ 2.9 × 10−39 to
3.4× 1038. One special value is used to represent the real number zero.

The 19-bit precision LNS format maintains the same range as 32-bit but has preci-
sion reduced to 11 fractional bits. It is comparable to the 16-bit FLP formats used on
commercial DSP devices.

2.2 The LNS Operations

In the LNS, a value x is represented as the fixed point quantity i = log|x|, with an extra
bit to indicate the sign of x and a special arrangement to accommodate zero and other
exceptional values. Base-2 logarithms are used, though in principle any base could be
used. For two LNS values i = log2|x| and j = log2|y|, the LNS arithmetics involves
the following computations:

log2(x + y) = i + log2(1 + 2j−i), (1)

log2(x − y) = i + log2(1− 2j−i), (2)

log2(x ∗ y) = i + j, (3)

log2(
x

y
) = i− j, (4)

log2(
√

x) =
i

2
, (5)

where in (1) and (2), without loss of generality, we choose j ≤ i. In all these cases the
sign bits are handled separately by a simple logic.

1Most Significant Bit

4 2 DATA REPRESENTATION FOR THE LNS ARITHMETICS

The equations (3), (4), and (5) can be implemented as simple as fixed point addi-
tion, subtraction, and shift operations. Unfortunately the equations (1) and (2) require
evaluation of a non-linear function

F(r = j − i) = log2(1± 2r), (6)

which can be seen of the Figure 2. The solution of this problem is discussed in [2]
and [1].

-8 -7 -6 -5 -4 -3 -2 -1 0

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

-8 -7 -6 -5 -4 -3 -2 -1 0

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

log
2
(1+2

j-i
)

log
2
(1-2

j-i
)

Figure 2: LNS sum and difference functions

Each operation in the HSLA returns result and a status flag. Status flag corresponds
to the calculation result. The different statuses and the reserved LNS values are pre-
sented in the Table 1.

Description status flag 32-bit value 19-bit value output value
positive value 0 result
negative value 1 result
LNS zero 2 0x40000000 0x00020000 zero
LNS NAN 3 0xC0000000 0x00060000 NaN
+ overflow 4 0x3FFFFFFF 0x0001FFFF largest positive
− overflow 5 0xBFFFFFFF 0xFFFDFFFF largest negative
+ underflow 6 0x40000000 0x00020000 zero
− underflow 7 0x40000000 0x00020000 zero

Table 1: Reserved values and statuses for the 32- and 19-bit precision LNS

2.3 Standard and Extended Precision Arithmetics

The HSLA library includes special versions of the LNS operations working in an ex-
tended range of values. If the values in a section of an algorithm are guaranteed to fall
in the range 〈−1; 1〉, the special form of LNS operations provides extended data range
in respect to underflow.

2.3 Standard and Extended Precision Arithmetics 5

The classical LNS would only recognize values in the range of 〈±10−38;±1038〉
(the smallest step size is 10−38). The extended data representation is able to distinguish
the values in the range of 〈±10−76;±1076〉.

The extended precision is achieved by mapping the range 〈−1; 1〉 to the range
〈−Max; Max〉. Arithmetic operations use identical hardware with only a few ad-
ditional shift-type operations. This is the LNS analogy of the fixed-comma operations
in the fixed point arithmetic world, or the floating point operations with re-defined
exponent range.

All operands of the extended precision operations must be scaled from the range
〈−1; 1〉 to the range 〈−Max; Max〉 before the extended precision functions are used.
Let C be a scaling constant C = Max, where Max is the maximum LNS number. For
normalization (scaling from 〈−1; 1〉 to 〈−Max; Max〉) the following expression can
be used:

logmul (a, C, &na, &flag);

where a is a LNS variable in the range 〈−1; 1〉 to be normalized, na is the LNS variable
after normalization in the range 〈−Max; Max〉.

For the de-normalization (scaling from 〈−Max; Max〉 to 〈−1; 1〉) the following
expression can be used:

logdnore (na, &a, &flag);

or

logdiv (na, C, &a, &flag);

where na is a normalized variable in the range 〈−Max; Max〉, a is the de-normalized
variable in the range 〈−1; 1〉. See logarithmic de-normalization (see Sec. 3.2.2), mul-
tiplication (see Sec. 3.1.5), and division (see Sec. 3.1.4).

6 3 THE C LEVEL FUNCTIONS

3 The C Level Functions

The HSLA libraries hold the basic low level functions required for any C application
using LNS arithmetics. The following libraries are available:

hsla 19.lib 19-bit LNS arithmetic operations
hsla 32.lib 32-bit LNS arithmetic operations

Both libraries holds the same two sets of functions. One set operates on numbers in
the full data range (±3.4× 1038;±2.9× 10−39), the other covers the special version
of LNS functions operating on the extended precision data range, intended for the
algorithms calculating in the range 〈−1; 1〉.

All LNS functions work with scalars and have the following syntax:

void fn_name (int_T a, int_T b, int_T *res, int_T *fl);

or

void fn_name (int_T a, int_T *res, int_T *fl);

where the type int T is either integer or it is defined in the the Matlab header file
mex.h if Matlab mex compiler is used.

3.1 Standard Precision Functions

The basic LNS functions contained in the hsla XX.lib library will be described in
this section.

3.1.1 The Function int2log ()

Purpose: Integer to logarithm domain conversion.

Synopsis:

void int2log (int_T a, int_T *res, int_T *fl);

Description: The function converts integer domain numbers into the LNS represen-
tation. The input numbers are supposed to be in the 32- or 19-bit precision LNS format
(see below). The result and return status of conversion are returned in the variables
res and fl.

Input format: Input numbers are supposed to be two’s complement fraction part of
the fixed-point value in the range 〈−1; 1〉. There is difference in the input format if
used 32- or 19-bit version of int2log(). 32-bit version uses 24-bit fraction part of
the fixed-point input number. 19-bit version uses 16-bit fraction part of the fixed-point
input number. Negative numbers are stored in the two’s complement. Zero, 1, and −1
are represented as depicted in the Table 2.

Output format: Output is a 32- or 19-bit LNS format number.

3.1 Standard Precision Functions 7

DEC value HEX for 32-bit HEX for 19-bit
0 0x00000000 0x00000000
1 0x01000000 0x00010000
−1 0xFF000000 0xFFFF0000

Table 2: Integer domain number representation for 32- and 19-bit HSLA

Example: Suppose we want to convert number −0.423 in 32- or 19-bit LNS envi-
ronment. We will use the following:

#define LOGPREC 32
#include "hsla_LNS.h"

#define INT_SHIFT_32 24
#define INT_SHIFT_19 16

#if LOGPREC == 32
#define CONV_SHIFT (1 << INT_SHIFT_32)
#else
#define CONV_SHIFT (1 << INT_SHIFT_19)
#endif /* LOGPREC */

int main (void) {
int_T a; /* integer domain number */
int_T result, flag;

/*
.
.
.

*/

a = (int_T) (-0.423 * CONV_SHIFT);
int2log (a, &result, &flag);

/*
.
.
.

*/

exit (0);
}

See also: log2int()

3.1.2 The Function log2int ()

Purpose: Logarithm to integer domain conversion.

8 3 THE C LEVEL FUNCTIONS

Synopsis:

void log2int (int_T a, int_T *res, int_T *fl);

Description: The function converts LNS numbers into the integer domain. The result
and return status of conversion are returned in the variables res and fl.

Input format: Input is a 32- or 19-bit LNS format number in the range 〈−1; 1〉.

Output format: The output integer number is held in the same format as the input
number of the int2log() function (see Sec. 3.1.1).

Example: Suppose we want to get the floating-point number from the conversion in
32- or 19-bit LNS environment. We will use the following:

#define LOGPREC 32
#include "hsla_LNS.h"

#define INT_SHIFT_32 24
#define INT_SHIFT_19 16

#if LOGPREC == 32
#define CONV_SHIFT (1 << INT_SHIFT_32)
#else
#define CONV_SHIFT (1 << INT_SHIFT_19)
#endif /* LOGPREC */

int main (void) {
int_T a; /* logarithm domain number */
int_T result, flag;
float f;

/*
.
.
.

*/

log2int (a, &result, &flag);
f = (float) (result / CONV_SHIFT);

/*
.
.
.

*/

exit (0);
}

3.1 Standard Precision Functions 9

See also: int2log()

3.1.3 The Function logadd ()

Purpose: Logarithmic addition in the meaning of (1).

Synopsis:

void logadd (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs the logarithmic addi-
tion. The result and return status of the operation are returned in the variables res and
fl.

Note: The logarithmic addition can be used also for the extended precision arithmetic
without any change (see 2.3).

See also: logsub()

3.1.4 The Function logdiv ()

Purpose: Logarithmic division in the meaning of (4).

Synopsis:

void logdiv (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs the logarithmic divi-
sion. The result and return status of the operation are returned in the variables res and
fl.

See also: logdive()

3.1.5 The Function logmul ()

Purpose: Logarithmic multiplication in the meaning of (3).

Synopsis:

void logmul (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs the logarithmic mul-
tiplication. The result and return status of the operation are returned in the variables
res and fl.

See also: logmule()

3.1.6 The Function logsqrt ()

Purpose: Logarithmic square root in the meaning of (5).

10 3 THE C LEVEL FUNCTIONS

Synopsis:

void logsqrt (int_T a, int_T *res, int_T *fl);

Description: The function takes one argument and performs the logarithmic square
root. The result and return status of the operation are returned in the variables res and
fl.

See also: logsqrte()

3.1.7 The Function logsub ()

Purpose: Logarithmic subtraction in the meaning of (2).

Synopsis:

void logsub (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs the logarithmic sub-
traction. The result and return status of the operation are returned in the variables res
and fl.

Note: The logarithmic subtraction can be used also for the extended precision arith-
metic without any change (see 2.3).

See also: logadd()

3.1.8 Conversion Functions double2log () and log2double ()

Purpose: Double to logarithm and logarithm to double conversions.

Synopsis:

void double2log (double *a, int nelems, double *res,
double *fl);

and

void log2double (double *a, int nelems, double *res);

Description: The functions convert an array of double precision numbers to the LNS
format and vice versa. They convert numbers in the full LNS format range. To compute
the results the definition of base-2 logarithm, log2(x) = log(x)

log(2) , is used. The functions
work with an array of data. Input and output arrays are held as pointers to double.
Number of elements of array is specified by the parameter nelems. The array of
return statuses is held in the variable fl.

Note: These functions serve for conversions with maximum precision and they do
not have bit-exact equivalents at the hardware level.

3.2 Extended Precision Functions 11

Example:

#include <stdlib.h>

#define LOGPREC 32
#include "hsla_LNS.h"

int main (void) {
double *a; /* double precision numbers */
double *results; /* LNS numbers */
double *flags; /* return statuses */
int n = 10; /* number of elements */

a = malloc (n, sizeof (double));
results = malloc (n, sizeof (double));
flags = malloc (n, sizeof (double));

/*
.
.
.

*/

double2log (a, n, results, flags);

/*
.
.
.

*/

exit (0);
}

3.2 Extended Precision Functions

3.2.1 The Function logdive ()

Purpose: Logarithmic division in the meaning of (4) for extended precision arith-
metics.

Synopsis:

void logdive (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs logarithmic division
with an extended data range (see Sec. 2.3). All input parameters must be scaled from
the range 〈−1; 1〉 to the range 〈−Max; Max〉 before the use of this function. The
result and return status of the operation are returned in the variables res and fl.
For normalization and de-normalization use functions logmul() (see Sec. 3.1.5) and
logdnore() (see Sec. 3.2.2).

12 3 THE C LEVEL FUNCTIONS

See also: logmul(), logdnore()

3.2.2 The Function logdnore ()

Purpose: De-normalization routine.

Synopsis:

void logdnore (int_T a, int_T *res, int_T *fl);

Description: The function takes one argument and performs its de-normalization in
the context of extended precision arithmetics (see Sec. 2.3). Input variable is scaled
from the range 〈−Max; Max〉 to the range 〈−1; 1〉. The result and return status of the
operation are returned in the variables res and fl.

3.2.3 The Function logmule ()

Purpose: Logarithmic multiplication in the meaning of (3) for extended precision
arithmetics.

Synopsis:

void logmule (int_T a, int_T b, int_T *res, int_T *fl);

Description: The function takes two arguments and performs logarithmic multipli-
cation with an extended data range (see Sec. 2.3). All input parameters must be scaled
from the range 〈−1; 1〉 to the range 〈−Max; Max〉 before the use of this function.
The result and return status of the operation are returned in the variables res and fl.
For normalization and de-normalization use functions logmul() (see Sec. 3.1.5) and
logdnore() (see Sec. 3.2.2).

See also: logmul(), logdnore()

3.2.4 The Function logsqrte ()

Purpose: Logarithmic square root in the meaning of (5) for extended precision arith-
metics.

Synopsis:

void logsqrte (int_T a, int_T *res, int_T *fl);

Description: The function takes one argument and performs logarithmic square root
with an extended data range (see Sec. 2.3). The input parameter must be scaled from
the range 〈−1; 1〉 to the range 〈−Max; Max〉 before the use of this function. The
result and return status of the operation are returned in the variables res and fl.
For normalization and de-normalization use functions logmul() (see Sec. 3.1.5) and
logdnore() (see Sec. 3.2.2).

See also: logmul(), logdnore()

3.3 Interfaces for Double Precision Variables 13

3.3 Interfaces for Double Precision Variables

To make the application programming easier a set of functions referred to as double
precision interfaces has been designed. They do not perform any calculations but they
are used for “double precision” access to the functions described in the Sections 3.1
and 3.2. The list of all available functions can be found in the Table 3. All listed
functions have their bit-exact equivalents at the hardware level.

interface LNS function description
la () logadd () logarithmic addition
ld () logdiv () logarithmic division
lm () logmul () logarithmic multiply
ls () logsub () logarithmic subtraction
lsq () logsqrt () logarithmic square root
lde () logdive () extended precision logarithmic division
lme () logmule () extended precision logarithmic multiply
lsqe () logsqrte () extended precision logarithmic square root
ldnore () logdnore () logarithmic de-normalization
i2l () int2log () integer to logarithm domain conversion
l2i () log2int () logarithm to integer domain conversion

Table 3: Double interfaces and the corresponding LNS functions

Interface functions have the following syntax:

double interface_name (double a, double b);

or

double interface_name (double a);

Interface functions return the result as double. Status flag is written to the global vari-
able zstatus declared in the header file hsla LNS.h.

The use of an interface functions is shown in the following example:

#include <stdio.h>

#define LOGPREC 32
#include "hsla_LNS.h"

#define INT_SHIFT_32 24
#define INT_SHIFT_19 16

#if LOGPREC == 32
#define CONV_SHIFT (1 << INT_SHIFT_32)
#else
#define CONV_SHIFT (1 << INT_SHIFT_19)
#endif /* LOGPREC */

int main (void) {
double a, b; /* floating point operands */

14 3 THE C LEVEL FUNCTIONS

double la, lb; /* logarithmic operands */
double z; /* floating point result */
double lz; /* logarithmic result */

a = 0.435;
b = - 0.298;

/* convert numbers to logarithm */
la = i2l (a * CONV_SHIFT);
lb = i2l (b * CONV_SHIFT);

/* perform logarithmic addition */
lz = la (la, lb);

/* status flag is written to zstatus */
if (zstatus == 0)

printf ("The result is positive: ");

/* convert result to floating point */
z = l2i (lz) / CONV_SHIFT;

/* print result */
printf ("%f\n", z);

exit (0);
}

15

4 Matlab HSLA Toolbox MEX Functions

Matlab HSLA toolbox consists of a set of basic functions for LNS arithmetics. These
functions can be called from the Matlab command line and used in the Matlab m-
scripts. The source code of the mex functions can be found in the directory mex/.

4.1 Standard Precision Functions

4.1.1 The Function i2log ()

Purpose: Integer to logarithm domain conversion for Matlab.

Synopsis:

z = i2log (a);

or

[z, zfl] = i2log (a);

Description: Function works with scalars or matrices of double precision numbers
holding inputs in the integer format and returns scalar or matrices holding numbers
in the LNS format. At least one output parameter has to be specified. Status flag is
optionally returned as the second output variable.

Input format: Input numbers are supposed to be double precision numbers having
the same data format and range as the input numbers used in the int2log() function
(see Sec. 3.1.1).

Output format: Output is a double precision variable holding 32- or 19-bit LNS
format number.

Example: Suppose we want to convert random data vector to its logarithmic equiva-
lent in the 32-bit LNS environment. We will use the following:

INT_SHIFT_32 = 24;
a = fix (rand (5, 1) * (2ˆINT_SHIFT_32));
la = i2log (a);

In the case of the 19-bit LNS a small modification is required:

INT_SHIFT_19 = 16;
a = fix (rand (5, 1) * (2ˆINT_SHIFT_19));
la = i2log (a);

Variable a is a column vector of doubles holding the input integer data in the range
〈−1; 1〉. Variable la is a column vector of doubles holding the values in the LNS
format.

See also: log2i()

16 4 MATLAB HSLA TOOLBOX MEX FUNCTIONS

4.1.2 The Function log2i ()

Purpose: Logarithm to integer domain conversion for Matlab.

Synopsis:

z = log2i (a);

or

[z, zfl] = log2i (a);

Description: Function works with scalars or matrices of double precision variables
holding inputs in the range 〈−1; 1〉 in the LNS format and returns scalars or matrices
of integer data in the double precision representation. At least one output parameter
has to be specified. Status flag is optionally returned as the second output variable.

Input format: Inputs are supposed to be double precision values holding 32- or 19-
bit LNS format value in the range 〈−1; 1〉.

Output format: Output numbers are stored in the double precision having the same
integer format as the input numbers of the int2log() function described in the Sec-
tion 3.1.1.

Example: Suppose we want to convert random vector holding values in the range
〈−1; 1〉 stored in the LNS format to floating-point representation in the 32-bit LNS
environment. We will use the following:

INT_SHIFT_32 = 24;
la = d2log (rand (5, 1));
a = log2i (a) / (2ˆINT_SHIFT_19);

In the case of the 19-bit LNS a small modification is required:

INT_SHIFT_19 = 16;
la = d2log (rand (5, 1));
a = log2i (a) / (2ˆINT_SHIFT_19);

Variable la is a column vector of double precision numbers in the range 〈−1; 1〉 stored
in the LNS format. Variable a is the result of conversion divided to get the final real
floating-point vector in the range 〈−1; 1〉, corresponding to the original real number
vector generated by rand (5, 1).

See also: i2log(), d2log()

4.1.3 The Function ladd ()

Purpose: Logarithmic addition for Matlab.

4.1 Standard Precision Functions 17

Synopsis:

z = ladd (a, b);

or

[z, zfl] = ladd (a, b);

Description: Function works with scalars and returns sum of two LNS numbers. At
least one output parameter has to be specified. Status flag is optionally returned as the
second output variable.

Note: The logarithmic addition can be used also for the extended precision arithmetic
without any change (see Sec. 2.3).

See also: lsub()

4.1.4 The Function ldiv ()

Purpose: Logarithmic division for Matlab.

Synopsis:

z = ldiv (a, b);

or

[z, zfl] = ldiv (a, b);

Description: Function works with scalars and returns the result of division of two
LNS numbers. At least one output parameter has to be specified. Status flag is option-
ally returned as the second output variable.

See also: ldive()

4.1.5 The Function lmul ()

Purpose: Logarithmic multiplication for Matlab.

Synopsis:

z = lmul (a, b);

or

[z, zfl] = lmul (a, b);

Description: Function works with scalars and returns the result of multiplication of
two LNS numbers. At least one output parameter has to be specified. Status flag is
optionally returned as the second output variable.

See also: lmule()

18 4 MATLAB HSLA TOOLBOX MEX FUNCTIONS

4.1.6 The Function lsub ()

Purpose: Logarithmic subtraction for Matlab.

Synopsis:

z = lsub (a, b);

or

[z, zfl] = lsub (a, b);

Description: Function works with scalars and returns the result of subtraction of
two LNS numbers. At least one output parameter has to be specified. Status flag is
optionally returned as the second output variable.

Note: The logarithmic subtraction can be used also for the extended precision arith-
metic without any change (see Sec. 2.3).

See also: ladd()

4.1.7 The Function lsqrt ()

Purpose: Logarithmic square root for Matlab.

Synopsis:

z = lsqrt (a);

or

[z, zfl] = lsqrt (a);

Description: Function works with scalar and returns the result of the square root
operation of LNS number. At least one output parameter has to be specified. Status
flag is optionally returned as the second output variable.

See also: lsqrte()

4.1.8 Conversion Functions d2log () and log2d ()

Purpose: Conversions between double precision and the LNS format.

Synopsis:

z = d2log (a);

or

[z, zfl] = d2log (a);

and

z = log2d (a);

4.2 Extended Precision Functions 19

Description: The functions convert the double precision numbers to the LNS format
numbers and vice versa. They use the C conversion functions double2log() and
log2double() (see Sec. 3.1.8) and perform conversions both on scalars and on
matrices.

4.2 Extended Precision Functions

4.2.1 The Function ldive ()

Purpose: Logarithmic extended precision division for Matlab.

Synopsis:

z = ldive (a, b);

or

[z, zfl] = ldive (a, b);

Description: Function works with scalars and returns the result of extended precision
division of two LNS numbers. Input and output operands are in the extended data range
(see Sec. 2.3). For normalization or de-normalization use lmul() (see Sec. 4.1.5)
or ldnore() (see Sec. 4.2.2) respectively. At least one output parameter has to be
specified. Status flag is optionally returned as the second output variable.

Example:

la = d2log (rand (1)); % la and lb in <-1;1>
lb = d2log (rand (1));

if (la > lb) % must be: |la| < |lb|
tmp = lb; % swap la and lb
lb = la;
la = tmp;

end;

lzero = d2log (zeros (1)); % LNS zero
lmax = lzero - 1; % maximal LNS number

na = lmul (la, lmax); % normalization
nb = lmul (lb, lmax);

nz = ldive (na, nb); % ext. prec. division

.

.

.

lz = ldnore (nz); % denormalization
res = log2d (lz);

20 4 MATLAB HSLA TOOLBOX MEX FUNCTIONS

See also: lmul(), ldnore(), d2log(), log2d()

4.2.2 The Function ldnore ()

Purpose: De-normalization routine for Matlab.

Synopsis:

z = ldnore (a);

or

[z, zfl] = ldnore (a);

Description: The function takes one argument and performs de-normalization in the
context of extended precision arithmetic (see Sec. 2.3). Input variable is scaled from
the range 〈−Max; Max〉 to the range 〈−1; 1〉. At least one output parameter has to be
specified. Status flag is optionally returned as the second output variable.

4.2.3 The Function lmule ()

Purpose: Logarithmic extended precision multiplication for Matlab.

Synopsis:

z = lmule (a, b);

or

[z, zfl] = lmule (a, b);

Description: Function works with scalars and returns the result of the extended pre-
cision multiplication of two LNS numbers. Input and output operands are in the ex-
tended data range (see Sec. 2.3). For normalization or de-normalization use lmul()
(see Sec. 4.1.5) or ldnore() (see Sec. 4.2.2) respectively. At least one output pa-
rameter has to be specified. Status flag is optionally returned as the second output
variable.

See also: lmul(), ldnore()

4.2.4 The Function lsqrte ()

Purpose: Logarithmic extended precision square root for Matlab.

Synopsis:

z = lsqrte (a);

or

[z, zfl] = lsqrte (a);

4.2 Extended Precision Functions 21

Description: Function works with scalar and returns the result of the extended pre-
cision square root operation of LNS number. Input and output operands are in the ex-
tended data range (see Sec. 2.3). For normalization or de-normalization use lmul()
(see Sec. 4.1.5) or ldnore() (see Sec. 4.2.2) respectively. At least one output pa-
rameter has to be specified. Status flag is optionally returned as the second output
variable.

See also: lmul(), ldnore()

22 4 MATLAB HSLA TOOLBOX MEX FUNCTIONS

Part II

32- and 19-bit TWIN LNS ALU

24 5 THE INSTALLATION OF THE LNS ALU

5 The Installation of the LNS ALU

5.1 The Contents of the LNS ALU

This chapter gives you a brief information on what you can find in the LNS ALU
directory. After unpacking the lnsalu package you will find the following directory
structure in the lalu/ directory:

edif/ EDIF files for 32- and 19-bit versions
examples/ DK1 Handel-C examples for 32- and 19-bit versions
include/ DK1 Handel-C header files for 32- and 19-bit versions
plugins/ DK1 Handel-C plugins for 32- and 19-bit versions

The LNS ALU cores are provided as EDIF files that can be found in the edif/
directory. It contains two subdirectories, the directory virtex/ holding “edifs” for
Virtex targets and the directory virtex2 holding “edifs” for Virtex II targets. Each
of these subdirectories keeps all required EDIF files both for 32- and 19-bit precision
LNS ALU. Optional cores of the fast XILINX 32-bit dual-port block RAM’s are also
contained in these directories.

Celoxica DK1 Handel-C examples for 32- and 19-bit LNS ALU together with
the appropriate Matlab script examples are located in the directory examples/ (see
Sec. 8).

In the directory include/ can be found DK1 Handel-C header files. The header
file laluTWIN.h provides necessary interfaces to the individual LNS ALU modules.
Other header files in this directory are optional and will be described in the Section 7.

It is possible to use DK1 SIMULATION option to test and debug user application
in the DK1 simulator. Plugins provide bit-exact and cycle-exact model of modules that
are not available as Handel-C source code and are located in the plugins/ directory.

5.2 LNS ALU Examples Settings

All DK1 examples have been prepared and tested with the Celoxica RC1000 PCI card
equipped with the XILINX Virtex XCV2000E-6 FPGA device.

All DK1 projects have been prepared for compiling without any additional user
changes in the default project settings. The README files can be found in each dk1
directory. The project settings changes prepared for the appropriate example are given
in README files.

It is assumed that the support for Celoxica RC1000 has been installed on the com-
puter and that the following settings have been added into DK1 environment. Choose
Tools → Options → Directories → Include files and add:

<CELOXICA_ROOT>\DK1\Source
<CELOXICA_ROOT>\RC1000-PP\fpga\Virtex

where <CELOXICA_ROOT> is the directory where Celoxica products are installed
(e.g. C:\Program Files\Celoxica). The DK1\Source directory has to be set
to allow access to the file stdlib.c. The RC1000-PP\fpga\Virtex directory
is required to provide access to the Handel-C header file for the RC1000 card.

The Celoxica RC1000 card support is also needed. In the MS Visual Studio choose
Tools → Options → Directories → Include files and add:

<CELOXICA_ROOT>\RC1000-PP\INCLUDE

5.2 LNS ALU Examples Settings 25

and in the Tools → Options → Directories → Library files add:

<CELOXICA_ROOT>\RC1000-PP\LIB

where <CELOXICA_ROOT> is the same directory as discussed in the previous para-
graph.

The MSVC example source files facilitate communication with the RC1000 card,
load FPGA design, and to send or receive data to or from the card. All MSVC projects
have been prepared to allow compilation without any additional user changes in the
default project settings. The README files in each msvc directory can be found. The
project settings changes prepared for the appropriate example are given in these files.

Matlab m-scripts does not require any additional user settings. For customization
and other HSLA Toolbox settings see Section 1.

26 6 THE LNS ALU AND CELOXICA DK1 TARGETS

6 The LNS ALU and Celoxica DK1 Targets

6.1 LNS ALU Operations

Logarithmic addition, subtraction, multiplication, division, and square root are pro-
vided. Multiplication, division, and square root are implemented to accomplish these
operations in one clock cycle. Addition and subtraction are implemented as 8-stage
pipelined operations, i.e. appropriate operands can be provided to ALU in every clock
cycle and the corresponding results are ready after eight clock cycles.

The EDIF and DK1 Handel-C files are available for the purpose of DK1 simulations
and of hardware implementation. The main LNS ALU modules lalu32.edf for
32-bit precision ALU and lalu19.edf for 19-bit precision are both implemented
as dual-port 8-stage pipelined ALU that handles logarithmic addition and subtraction
operations. It is possible to process two sets of operands in a parallel way in every
clock cycle.

Division, multiplication, and square root operations are available as an array of
functions (source codes are provided) in the ALU header file named laluTWIN.h
used in the DK1 environment. It is located in the include/ directory. It also includes
multiplication, division, and square root functions working in the extended precision
data range for operands in the range 〈−1; 1〉. This header file also provides necessary
interface to the addition-subtraction ALU module mentioned in the previous paragraph.

6.2 LNS ALU Functions

Function or macro Operation
z = lm [N] (a, b) logarithmic multiplication
z = ld [N] (a, b) logarithmic division
z = lsq [N] (a) logarithmic square root
z = lme [N] (a, b) logarithmic extended precision multiplication
z = lde [N] (a, b) logarithmic extended precision division
z = lsqe [N] (a) logarithmic extended precision square root
z = ldnor [N] (a) converting from extended precision
z = ladd1 (a, b) logarithmic addition, the first port function
z = lsub1 (a, b) logarithmic subtraction, the first port function
z = ladd2 (a, b) logarithmic addition, the second port function
z = lsub2 (a, b) logarithmic subtraction, the second port function
la1 (a, b) logarithmic addition, the first port macro
ls1 (a, b) logarithmic subtraction, the first port macro
la2 (a, b) logarithmic addition, the second port macro
ls2 (a, b) logarithmic subtraction, the second port macro
z = int2log (a) integer to logarithm domain conversion
z = log2int (a) logarithm to integer domain conversion

Table 4: TWIN LNS ALU functions

The functions and macros provided by 32- and 19-bit precision LNS ALU are
shown in the Table 4. All operands have 32- or 19-bit width. The constant N is used as
reference to the appropriate element of function array. A number of available parallel

6.3 Celoxica DK1 Targets 27

function instances in the array is specified using an appropriate definition (see Sec. 7)
during the compilation.

The ladd1, lsub1, ladd2, and lsub2 are functions. They return results in the same
way as the other LNS functions. These functions wait for the ALU hardware and return
result in the 10-th clock cycle. However, they block effective use of the ALU hardware
in a pipeline.

The ALU can be interfaced in Handel-C using low-level macros la1, ls1, la2, and
ls2. They do not return any results. The macros set appropriate values (connect reg-
isters) to the LNS ALU inputs. The results have to be acquired after 8 clock cycles
(in the 9-th clock cycle) using the LNS ALU interface, i.e. by reading lalu.z1 and
lalu.z2 (see Sections 7.1 and 8).

6.3 Celoxica DK1 Targets

It is possible to use the DK1 SIMULATION option to test and debug user application
in the DK1 simulator. The LNS ALU plugins lalu32.dll and lalu19.dll are
available for this purpose. They are located in the plugins/ directory. These plugins
provide bit-exact and cycle-exact model of the pipelined dual-port LNS ALU.

Besides the SIMULATION mode, the DK1 user can choose one of two compi-
lation ways. DK1 source codes can be compiled to the VHDL or EDIF. The files
lalu32.edf and lalu19.edf are required by XILINX P&R tools. These files
are located in the edif/ directory. Additional necessary EDIF files can be found in
appropriate subdirectories. All included edf and edn files have been compiled for
XILINX Virtex XCV2000E-6 and XILINX Virtex II XC2V6000-4 FPGA devices.

28 7 LNS ALU HEADER FILES

7 LNS ALU Header Files

The following header files are provided:

connect.h communication between PC and Celoxica RC1000 card
conv.h integer to logarithm domain and vice versa conversions
lalu19.h 19-bit LNS ALU parameters
lalu32.h 32-bit LNS ALU parameters
laluTWIN.h basic LNS ALU definitions and interfaces
ram.h dual-port block RAM interfaces
ram32x256.h 32-bit 256 record long block RAM parameters
ram32x512.h 32-bit 512 record long block RAM parameters
ram32x1024.h 32-bit 1024 record long block RAM parameters
ram32x2048.h 32-bit 2048 record long block RAM parameters
ram32x4096.h 32-bit 4096 record long block RAM parameters
U ram.h example block RAM interface referred to as U
W ram.h example block RAM interface referred to as W
Y ram.h example block RAM interface referred to as Y
Z ram.h example block RAM interface referred to as Z

The following header files can be directly used and the “including” order should be
respected. A small fragment of using in the source code is given:

/* standard DK1 files */
#include <stdlib.h>
#include "stdlib.c"

/* dual-port LNS ALU header */
/* must be defined before including ’laluTWIN.h’ */
#define LOGPREC 32
#include "laluTWIN.h"

/* communication between design and "PC" */
#include "connect.h"

/* int2log and log2int functions */
#include "conv.h"

/* defines length of 32-bit block RAM */
/* must be defined before including ’ram.h’ */
#define RAMLEN 1024
#include "ram.h"

The next sections provide description of individual header files in more detail.

7.1 The Header File laluTWIN.h

The LNS ALU has been designed to develop DK1 Handel-C applications using the
LNS arithmetics. The Handel-C header file laluTWIN.h provides interface to the
LNS ALU modules. In the same directory can also be found header files lalu32.h
and lalu19.h. They should not be used separately because they are included in the

7.2 The Header File connect.h 29

basic header file laluTWIN.h in connection with the 32- or 19-bit precision LNS
arithmetics. To select the 32- or 19-bit precision arithmetics the macro (#define)
LOGPREC is used. It must be set to the value 32 or 19 in the source code before
including the laluTWIN.h header file or this macro definition has to be provided as
the Handel-C compiler parameter.

Three types of compiler targets can be chosen. The default is compiling to VHDL.
If a user decides to compile to EDIF the macro TARGET EDIF has to be defined. Op-
tionally the macro SIMULATE can be defined if compiling for the DK1 SIMULATION
target. However in the most DK1 configurations the macro SIMULATE is pre-defined
by the DK1 GUI if the target Debug is chosen.

The LNS ALU parts designated to the logarithmic addition and subtraction are
implemented as dual-port 8-stage pipelined hardware modules. By default the set of
registers is connected to the input ports of ALU. This configuration is recommended
due to timing restraints. In spite of this a user can disable this behavior by defining the
macro NOT REG LALU INPUTS.

The LNS ALU modules for multiplication, division, and square root both for stan-
dard and extended precision data range arithmetic (see Sec. 2.3) are implemented as
arrays of functions. The number of functions in the appropriate array can be set by
defining the following macros to the required value:

#define NUMBER_OF_LM_MODULES 1
#define NUMBER_OF_LD_MODULES 1
#define NUMBER_OF_LSQ_MODULES 1
#define NUMBER_OF_LME_MODULES 1
#define NUMBER_OF_LDE_MODULES 1
#define NUMBER_OF_LSQE_MODULES 1
#define NUMBER_OF_LDNOR_MODULES 1

The default number of functions in arrays is 1 as shown above.

7.2 The Header File connect.h

The functions pc2alg() and alg2pc() are provided and defined in the header file
connect.h also located in the directory include/. Their purpose is communi-
cation between PC and a “hardware design”. If DK1 SIMULATION mode has been
chosen these functions use data files for communication. Otherwise hardware depen-
dent macros are used and the support for Celoxica RC1000 card has to be installed.

Communication data files in the SIMULATION mode can be defined using macros
SIM INPUT FNAME and SIM OUTPUT FNAME. The following macros are defined by
default:

#define SIM_INPUT_FNAME "..\\input.dat"
#define SIM_OUTPUT_FNAME "..\\outfpga.dat"

7.3 The Header File conv.h

The header file conv.h holds conversion functions int2log() and log2int().
The use of functions and data formats are intimately discussed in the Sections 3.1.1
and 3.1.2.

The functions use conversion tables that are implemented as the DK1 dual-port
block RAM’s or as the fast XILINX dual-port block RAM’s generated using XILINX

30 7 LNS ALU HEADER FILES

CORE Generator System. The first implementation is easier to read and analyze the
source code but less efficient and it is used only for demonstration purposes. The
second one does the same job but it is capable to operate with faster clocks. It is
highly recommended to use the latter implementation and it is the default behavior.
The int2log() and log2int() functions return results in 20 and 44 clock cycles
respectively in the 32-bit LNS ALU implementation. In the case of 19-bit LNS ALU
functions return results in 11 and 26 clock cycles.

The default behavior can be disabled using the following macro definition before
the including the header file conv.h. Then DK1 dual-port block RAM’s are used.

#define NOT_I2L_COREGEN_RAM

7.4 The Header File ram.h

In the header file ram.h two hardware macros, wd() and rd(), prepared for access-
ing the fast 32-bit XILINX dual-port block RAM’s. The macro wd() can be used to
write data into the memory and the macro rd() to read data from the memory. The
format of the macros is the following:

macro proc wd (bram, port, addr, din);

and

macro proc rd (bram, port, addr);

where the bram parameter represents the symbolic name of the appropriate memory
(e.g. U RAM), the port parameter assumes the value portA or portB, the addr
is the memory address, and the parameter din represents the value to be written to
the memory in the function wd(). The function rd() does not read the contents of
the memory immediately but it has to be collected in the next clock cycle using the
memory interface (e.g. result = u.douta).

As mentioned above the provided memories are of 32-bit width. The number of
memory records is determined by the macro RAMLEN. The macro has to be defined
before the including the header file ram.h. The RAM parameters are defined in the
individual header files ram32x<RAMLEN>.h, where <RAMLEN> is assumed to be set
to 256, 512, 1024, 2048, or 4096.

The header files U ram.h, W ram.h, Y ram.h, and Z ram.h are example inter-
faces for memories referred to as U RAM, W RAM, Y RAM, and Z RAM.

The array of signals connected directly to RAM interface is used to provide uni-
fied connection to individual memories using wd() and rd() functions. The coding
conventions should be traceable from the ram.h header file and have to be changed to
customize or add other memory modules.

All RAM modules are supported by DK1 plugins, enabling bit- and cycle-exact
simulation of the designs under the DK1 SIMULATOR.

31

8 The LNS ALU Examples

Examples of using LNS ALU can be found in the examples/ directory. The DK1
Design Suite Version 1.0 Service Pack 1 has been used. Examples have been tested in
DK1 simulation and on the Celoxica RC1000 card equipped with the XILINX Virtex
XCV2000E-6 FPGA device.

The 32- or 19-bit LNS ALU examples can be found in the subdirectories 32bit/
or 19bit respectively. The DK1 Handel-C source codes are almost the same for both
LNS ALU precisions except the LOGPREC macro definition.

The individual example directories has the same structure and the contents of sub-
directories is very similar in principle:

dk1/ Celoxica DK1 project and source code files that can be compiled to EDIF,
VHDL, or for DK1 simulation/debugger. The plugins (DLL files) required for
SIMULATION are contained.

msvc/ Microsoft Visual C source code of program that enables to upload hardware
design (bit-stream) file to the Celoxica RC1000 card and run final design in
FPGA using the test vectors read from file.

<ex name>sim.m Matlab test script for the DK1 SIMULATION. It creates the data
file for DK1 debugger, reads the results from the data file prepared by DK1 sim-
ulator, and tests for identical bit-exactness.

<ex name>hw.m Matlab test script for the design testing in FPGA. It writes data to
the file, calls <ex name>.exe, reads results from the file, and verifies for the
bit-exactness.

<ex name>.exe Win32 console application to be used to upload hardware design
to FPGA and provide data to hardware.

<ex name>.bit Hardware design. It is downloaded by <ex name>.exe to the
Celoxica RC1000 card.

<ex name>-edif.bit Hardware design built using EDIF path.

<ex name>-vhdl.bit Hardware design built using VHDL path.

The <ex name> stands for the appropriate name of example.
Running the DK1 SIMULATION the appropriate plugins (DLL) have to be copied

to the dk1/ directory. Follow these steps to simulate:

1. Start Matlab and execute the m-script <ex name>sim. The script creates input
data file for the simulator. The following message appears in the Matlab window:

Run DK1 simulation.
--- press any key ---

2. Start (use) DK1 simulator to run the simulation. You can run the Handel-C
example by pressing the key F5 or trace and debug the code, use breakpoints
etc. in DK1.

3. When the simulation has been finished the output file is created. Return back to
the Matlab and press any key. The following or similar message should appear:

32 8 THE LNS ALU EXAMPLES

<ex_name>: Results are OK.

This message indicates that the simulator generated bit-exactly identical results
with the Matlab libraries.

To run and test examples in the Virtex FPGA the appropriate <ex name>.bit
file has to exist in the current directory where the Matlab script is located. Follow these
steps to test example:

1. Start Matlab and execute the m-script <ex name>hw. The script creates input
data file for the Win32 console application <ex name>.exewhich is executed
by the script. The program <ex name>.exeloads the design into the FPGA,
provides input data, and stores the results to the output file.

2. After the output file has been created the finishes the computation and the fol-
lowing or similar message should appear:

<ex_name>: Results are OK.

This message indicates that the “FPGA design” generated bit-exactly identical
results with the Matlab libraries.

8.1 The Example alutest

The example alutest tests most of the LNS ALU operations described in the Section 6.2.
It is the most simple example.

8.2 The Example vadd01

The example vadd01 demonstrates addition of two vectors. It is implemented to use
the pipelined ALU effectively. It uses just one port of ALU to reduce the complexity
of demo code.

Fast XILINX 32-bit dual-port block RAM’s are used to store input and output vec-
tors. They have been generated using XILINX CORE Generator System. The appropri-
ate EDIF files are located in the edif/virtex/ram/ or edif/virtex2/ram/
directories. The DK1 plugins needed for simulation are located in the plugins/ram
directory. RAM interfaces are discussed in the Section 7.4.

8.3 The Example vadd02

The example vadd02 also demonstrates pipelined addition of two vectors except it uses
both ports of ALU to compute result more effectively.

In FPGA hardware, if 50 MHz clock rate is used, the LNS ALU provides 100
MFlops performance.

8.4 The Example i2ll2i

The example i2ll2i shows how to use the conversion, int2log() and log2int(),
functions that can be found in the header file conv.h (see Sec. 7.3) located in the
include/ directory. To store input and output vectors the “CoreGen” RAM’s are

8.5 The Example vaddsp 33

used (see Sec. 7.4). The functions use the different ports of the LNS ALU if the “Core-
Gen” RAM implementation of conversion tables is used. Thus they can be used in a
parallel way.

The appropriate EDIF files for hardware implementation are located in the directo-
ries edif/virtex/ or edif/virtex2/ both for 32- and 19-bit precision imple-
mentations. The DK1 plugins (DLL files) needed for the simulation are located in the
plugins/32bit/ or plugins/19bit/ directories.

8.5 The Example vaddsp

The example vaddsp implements the same vector addition as the example vadd02 (see
Sections 8.2 and 8.3) except it includes int2log() and log2int() conversion
functions for input and output vectors respectively. The input and output numbers are
stored in the same format as described in the Sections 3.1.1 and 3.1.2.

34 9 FUTURE WORK

9 Future Work

This chapter briefly presents what changes and new features you can expect in the next
versions of the Matlab HSLA Toolbox and the TWIN LNS ALU:

• the most of mex functions in the HSLA Toolbox support only scalar operations in
this version; both scalar and matrix operations will be supported

• HSLA libraries are guaranteed to work under MS Visual C/C++ environment at
present; the next versions should also support the GNU gcc compiler

• C and mex libraries will be platform independent and available also for UNIX
platforms

• both HSLA Toolbox and LNS ALU will also provide the conversion routines
(float2log and log2float) converting numbers from the standard IEEE
32-bit single precision floating point to the LNS format and vice versa

• the next version of the HSLA Toolbox will provide the equivalent IEEE 32-bit
floating point functions available for the test and benchmark purposes

• communication functions provided in the header file connect.h will be avail-
able for the XESS 800 board

• the same communication functions will also be provided for the Alpha Data
ADM-XRC card equipped with the XILINX Virtex XCV1000 FPGA device

REFERENCES 35

References

[1] J. N. Coleman and E. I. Chester. A 32-bit Logarithmic Arithmetic Unit and Its Per-
formance Compared to Floating-point. Research report, Department of Electrical
and Electronic Engineering, The University of Newcastle upon Tyne, 2000.

[2] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec. Arithmetic on the Euro-
pean Logarithmic Microprocessor. In IEEE Transactions on Computers, number 7
in 49, pages 702–715. IEEE Computer Society, July 2000.

	Preface
	The Structure of the Document

	I Matlab HSLA Toolbox
	The Installation of the HSLA Toolbox
	The Contents of the HSLA Toolbox
	Building Matlab MEX libraries

	Data Representation for the LNS Arithmetics
	Data Format, Range, and Precision
	The LNS Operations
	Standard and Extended Precision Arithmetics

	The C Level Functions
	Standard Precision Functions
	The Function int2log ()
	The Function log2int ()
	The Function logadd ()
	The Function logdiv ()
	The Function logmul ()
	The Function logsqrt ()
	The Function logsub ()
	Conversion Functions double2log () and log2double ()

	Extended Precision Functions
	The Function logdive ()
	The Function logdnore ()
	The Function logmule ()
	The Function logsqrte ()

	Interfaces for Double Precision Variables

	Matlab HSLA Toolbox MEX Functions
	Standard Precision Functions
	The Function i2log ()
	The Function log2i ()
	The Function ladd ()
	The Function ldiv ()
	The Function lmul ()
	The Function lsub ()
	The Function lsqrt ()
	Conversion Functions d2log () and log2d ()

	Extended Precision Functions
	The Function ldive ()
	The Function ldnore ()
	The Function lmule ()
	The Function lsqrte ()

	II 32- and 19-bit TWIN LNS ALU
	The Installation of the LNS ALU
	The Contents of the LNS ALU
	LNS ALU Examples Settings

	The LNS ALU and Celoxica DK1 Targets
	LNS ALU Operations
	LNS ALU Functions
	Celoxica DK1 Targets

	LNS ALU Header Files
	The Header File laluTWIN.h
	The Header File connect.h
	The Header File conv.h
	The Header File ram.h

	The LNS ALU Examples
	The Example alutest
	The Example vadd01
	The Example vadd02
	The Example i2ll2i
	The Example vaddsp

	Future Work

